Optimization of Gas Turbine Operational Parameters Using Machine Learning
DOI:
https://doi.org/10.59141/jrssem.v5i5.1264Keywords:
Gas Turbine, ANN–MLP, Optimization, Dispatch, CogenerationAbstract
Cogeneration Gas turbines are the main equipment in the electrical grid system. To meet the load needs on the grid, power plants have several gas turbine units, with the same or different capacities. The load adjustment for each gas turbine unit is carried out by numerical calculation based on load needs, operating parameters, fuel consumption and steam production. In Fact, the recommended value of the numerical calculation is always above the turbine gas operation, resulting in inefficient fuel consumption. This research reformaltes a gas turbine dispatch problem into a data-driven optimization task. Researcher develop an Artificial Neural Network (ANN) on Multi Layer Preceptron (MLP) model using parameter data from 2024 with filters baseload-efficient condition. The Model produces unit capability rankings and validated within <2% error. Compared to dispatcher recommendations, average deviation ~7% with the model, enabling measurable fuel saving and increased steam production.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Safwanul Hadi, Nani Kurniati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.










