Implementation Of Deep Learning For Fake News Classification In Bahasa Indonesia
DOI:
https://doi.org/10.59141/jrssem.v3i02.546Keywords:
Fake News, Deep Learning, LSTM, Model Tuning, Word2vec, CBOWAbstract
Fake news has become a serious threat in the digital information era. This research aims to develop a model for detecting fake news in Bahasa Indonesia using a deep learning approach, combining the Long Short-Term Memory (LSTM) method with word representations from Word2vec Continuous Bag of Words (CBOW) to achieve optimal results. Our main model is LSTM, optimized through hyperparameter tuning. This model can process information sequentially from both directions, allowing for a better understanding of the news context. The integration of Word2vec CBOW enriches the model's understanding of word relationships in news text, enabling the identification of important patterns for news classification. The evaluation results show that our model performs very well in detecting fake news. After the tuning process, we achieved an F1-Score of 97.30% and an Accuracy of 98.38%. 10-fold cross-validation yielded even better results, with an F1-Score and Accuracy reaching 99%.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eko Prasetio Widhi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.