

# Analysis of The Use of Mobile Banking Applications Using The Unified Theory of Acceptance and Use of Technology 3 (UTAUT3) and Perceived Security Models For PT BCA Digital Customers

Timothy Hans Wijaya<sup>1</sup> Siska Noviaristanti <sup>2</sup>

Universitas Telkom Bandung, Indonesia<sup>1,2</sup> Email: timothyhansw@student.telkomuniversity.ac.id, siskamarhen@telkomuniversity.ac.id \*Correspondence: siskamarhen@telkomuniversity.ac.id

ABSTRACT: The current digital era 4.0 encourages various business sectors to carry out digital transformation, one of which is carried out by the banking sector which is starting to utilize smartphone technology in conducting digital-based banking financial transactions using mobile banking applications. This study aims to analyze the factors that influence the use of BLU Mobile Banking, The research model used in this study is the UTAUT-3 model with the expansion of the model by adding perceived security to customers using mobile banking, which examines the extent to which the construction of PE, EE, SI, FC, HM, HB, PV, PI and PS affects the Behavioural Intention and Use Behavior of Mobile Banking BLU. This study used a quantitative approach with purporsive sampling using the slovin formula with a total of 400 respondents. Data was analyzed using Partial Least Square (PLS) and Structural Equation Modeling (SEM) with SmartPLS data processing tools. The results showed that PE, HM, HB, PI, PS had a positive effect on BI. EE ,SI ,FC ,PV does not have a positive effect on BI. FC, HB and BI have a positive influence on UB. The influence on Behavioral Intention is 58%, while the influence on Use Behavior is 60%. This research can be used as a reference for BLU to focus on implementing mobile banking services as the main strategy in carrying out digital transformation.

# Keywords: Digital Transformation, Mobile Banking, UTAUT-3, Acceptance

# INTRODUCTION

The presence of digitalization makes all activities carried out by individuals and companies easier because of the help of the latest technology (Awaluddin et al., 2022). According to data obtained from Bank Indonesia (BI) in June 2023, during April 2023, the total transaction value in the digital banking sector in Indonesia reached Rp4,264.8 trillion, almost reaching Rp4.3 quadrillion (katadata, 2023). If you look at the trends of the last five years, in April 2023, the value of **2179** | Analysis of The Use of Mobile Banking Applications Using The Unified Theory of Acceptance and Use of Technology 3 (UTAUT3) and Perceived Security Models For PT BCA Digital Customers

digital banking transactions throughout Indonesia has grown by 158% when compared to April 2018. This shows that despite fluctuations in digital transactions every month, in the long run, the use of digital banking services in Indonesia is expected to continue to increase. This prompted PT BCA Digital to launch the BLU application.

There have been many digital bank mobile banking applications launched in Indonesia such as BLU, Jenius, LINE Bank and many others. Based on data collected and published by Populix in 2022, it was revealed that the Blu BCA Digital financial platform was placed in fifth position in the list of the most popular digital banks in Indonesia, BLU BCA Digital mobile banking following the ranking of other banks such as Bank Jago, Bank Neo Commerce, Jenius, and Sea Bank (katadata, 2022) Currently, the adoption rate of Blu BCA Digital mobile banking in Indonesia is still quite low, reaching only around 25%.

Based on data on the number of applications downloaded on the *Google Play Store* until January 2023, Blu mobile banking is in 6th position with a total download of 1 million (Bisnis Indonesia, 2019). If you look at the time of application release, the 5 competitors above have a similar release time, namely in 2021 except for Jenius. But the adoption of *competitor mobile banking* already has 5x the download of *Blu mobile banking*.

Although PT BCA Digital has allocated substantial investment in the development of *mobile banking application features* and is supported by the reputation of the parent company PT. Bank Central Asia Tbk is good among Indonesians, data on the use of digital bank services in Indonesia shows that the adoption of BLU BCA Digital mobile banking is still at a low level. Therefore, a study needs to be conducted to identify the causes of low utilization of *BLU BCA Digital* mobile banking.

The formulation of the problem in this research is as follows:

- 1. How respondents perceive the variables *Performance Expectancy*, *Effort Expectancy*, *Social Influence*, *Facilitating Condition*, *Hedonic Motivation*, *Price Value*, *Habit*, *Personal Innovativeness*, *Perceived Security*, *behavioral intention* and *Use Behavior*.
- 2. What is the effect of *Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Condition, Hedonic Motivation, Price Value, Habit, Personal Innovativeness* and *Perceived Security* on behavioral *intention* in using BLU *mobile banking* services by BCA Digital bank customers in Indonesia?
- 3. What is the effect of *Facilitating Condition, Habit, Personal Innovativeness,* and *behavioral intention* on *Use Behavior* in using BLU *mobile banking* services by BCA Digital bank customers in Indonesia?
- 4. What is the effect of *Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Condition, Hedonic Motivation, Price Value, Habit, Personal Innovativeness* and *Perceived Security* on *Use Behavior* through *behavioral intention* as an intervening variable in using BLU *mobile banking* services by BCA Digital bank customers in Indonesia?

# Literature Review

In their research, Venkatesh and colleagues (2003) (Venkatesh et al., 2003) apply the concepts of performance expectations, effort expectations, attitudes to technology social implications, facilitating use, conditions, self-efficacy, and anxiety. After testing, three determining factors were eliminated, until the remaining four main factors determining the intention of use and usage behavior: performance expectancy, effort expectacny, social influence, and facilitating conditions.

Venkatesh introduced the UTAUT research model in 2003 and expanded it to UTAUT 2 in 2012 by adding three variables: hedonic motivation, price value, and habit (Venkatesh et al., 2012).

Farooq, Salam, Jaafar, Fayolle, Ayupp, Markovic, and Said (Farooq et al., 2017) further developed the UTAUT-2 model into the UTAUT-3 model by adding one variable, namely *Personal Innovativeness*. Farooq et al. (2017) view, recognition of personal innovation in information technology is defined as *Personal Innovativeness*.

This study adds one additional variable, namely perceived security. Perceived Security is a consumer's assessment of the security of making transactions using a website (Ha & Pan, 2018) . Undoubtedly, security remains one of the main concerns of consumers in the use of internet banking as well as electronic trading platforms (Wazid et al., 2019). Cybersecurity vulnerabilities as well as the challenges that come with them have made many people worry about online transactions. The adoption and use of M-Banking Applications has become a concern for consumers due to possible data breaches and leaks, theft and damage caused by computer hackers and cybercriminals (Apaua & Lallie, 2022). The banking sector always strives to do this, providing a large budget for the development of security mechanisms for its clients, for example multi-factor authentication, transaction encryption and others (Almaiah et al., 2023).

# **Conceptual Model**

One of the best models in predicting the acceptance and use behavior technology of in an organizational context is the Unified Theory of Acceptance and Use of Technology-3. The UTAUT model has been shown to account for as much as 66% variation in interest in technology use (Farooq et al., 2017). This number shows the level of accuracy and effectiveness of the UTAUT model in predicting interest in using technology.

Researchers also modified the frame of mind by including the variable *Perceived Security. Perceived Security* is defined as the degree of confidence in a technology or system to transmit sensitive information without any breach or leak (Merhi et al., 2019). **2181** Analysis of The Use of Mobile Banking Applications Using The Unified Theory of Acceptance and Use of Technology 3 (UTAUT3) and Perceived Security Models For PT BCA Digital Customers



Figure 1 Resarch Framework: Modification of the Model

- **Research Hypothesis**
- H1: Performance expectancy has a significant positive effect on behavioral intention.
- H2: Effort expectancy has a significant positive effect on behavioral intention.
- H3: Social Influences have a significant positive effect on behavioral intention.
- H4a: Facilitating Conditions have a significant positive effect on Behavioral intention.
- H4b: Facilitating Conditions have a significant positive effect on Use Behavior.
- H5: Hedonic Motivation has a significant positive effect on Behavioral intention.
- H6: Price Value has a significant positive effect on Behavioral intention.
- H7a: Habit has a significant positive effect on behavioral intention.
- H7b: Habit has a significant positive effect on Use Behavior.
- H8a: Personal Innovativeness has a significant positive effect on behavioral intention.

- H8b: Personal Innovativeness has a significant positive effect on Use Behavior.
- H9: Perceived Security has a significant positive effect on behavioral intention.
- H10: Behavioral intention has a significant positive effect on Use Behavior.

This study introduces а comprehensive investigation into the low adoption rate of BLU BCA Digital banking mobile in Indonesia by integrating the UTAUT-3 model with an additional variable, Perceived Security. Unlike previous studies, this research uniquely explores the combined influence of Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Hedonic Motivation, Price Value, Habit, Personal Innovativeness, and Perceived Security on both behavioral intention and actual use behavior. By focusing specifically on BLU BCA Digital and comparing it to its competitors, this study provides novel insights and actionable recommendations for enhancing user adoption and engagement in the digital

banking sector. The novelty of this research lies in its detailed analysis of user perceptions and behaviors towards BLU BCA Digital mobile banking, offering a deeper understanding of the barriers and enablers influencing its adoption in the Indonesian market.

#### **RESEARCH METHODOLOGY**

This research uses quantitative research methods that can be defined as organized investigation of phenomena through the collection of numerical data as well as the application of statistical, mathematical, or computational techniques (Sugiyono, 2016). This study the deductive applied method. Deductive research implements deductive methods to test theories on a research topic, where the presentation of theories starts from general aspects and gradually leads to a more specific approach. This research is included in the category of explanatory research. Explanatory research is classified as a

type of research that intends to interpret the position of variables and their respective implications for each other. The strategy used in this study is through Surveys. The data collected from the survey is then statistically analyzed to draw meaningful research conclusions. Based on the unit of analysis, the study belongs to individual types. Individual type research analyzes individual behavior to determine their respective responses to BLU mobile banking adoption intentions in Indonesia. The author's involvement in this study is Minimal Involvement. At this level, researchers are involved in a limited way in the research process. Based on Time Horizon, researchers use the cross sectional method. The cross sectional method is the collection of data carried out in one period, then the data is processed, analyzed and then concluded.

#### **Operational Variables**

| Variable     | Indicator                                                           | ltem |
|--------------|---------------------------------------------------------------------|------|
| Performance  | I find Blu mobile banking useful in my daily life                   | PE1  |
| Expectancy   | I feel Blu mobile banking can increase my chances of getting my     | PE2  |
| (PE)         | work done                                                           |      |
|              | I feel Blu mobile banking can help me get work done faster          | PE3  |
|              | I feel Blu mobile banking is able to increase my productivity       | PE4  |
| Effort       | I feel understanding Blu mobile banking is easy                     | EE1  |
| Expectancy   | I can access Blu mobile banking easily                              | EE2  |
| (EE)         | I found it easy to learn the use of Blu mobile banking              | EE3  |
|              | I feel that I can master the features in Blu mobile banking easily  | EE4  |
| Social       | I feel that important people around me suggest that I should use    | SI1  |
| Influence    | Blu's mobile banking service                                        |      |
| (SI)         | I feel that people who influence my behavior suggest that I should  | SI2  |
| . ,          | use Blu's mobile banking service                                    |      |
|              | I feel that people I value their opinions suggest that I should use | SI3  |
|              | Blu's mobile banking service                                        |      |
| Facilitating | I feel I have the necessary insight to use Blu's mobile banking     | FC1  |
| Condition    | services                                                            |      |
| (FC)         | I feel Blu's mobile banking is compatible with other technologies I | FC2  |
| · /          | use                                                                 |      |

Here are the operational variables in this study:

|                | I feel there is a unit that is ready to help if I have difficulty using Blu mobile banking services | FC3 |
|----------------|-----------------------------------------------------------------------------------------------------|-----|
| Hedonic        | I feel happy in implementing <i>Blu</i> mobile banking services                                     | HM1 |
| Motivation     | I was comforted in implementing <i>Blu's</i> mobile banking services                                | HM2 |
| (HM)           | The features of Blu's mobile banking service make me happy                                          | HM3 |
| Price Value    | I feel that using Blu's mobile banking service is quite cheap                                       | PV1 |
| (PV)           | I feel the benefits gained from using BLU mobile banking are worth the costs incurred               | PV2 |
|                | I feel that at the current price, Blu mobile banking is able to provide good value                  | PV3 |
| Habit          | I feel that using Blu's mobile banking services has become a habit                                  | HB1 |
| (HB)           | tor me                                                                                              |     |
|                | I feel using BLU mobile banking has become a must for me                                            | HB2 |
|                | I feel using BLU mobile banking is something that should be done without thinking                   | HB3 |
| Personal       | When I hear information about a new technology/feature, I try to                                    | PI1 |
| Innovativeness | Implement it                                                                                        |     |
| (PI)           | neers to try the latest technology/features                                                         | PI3 |
|                | Llove experimenting with new technologies/features                                                  | PI3 |
| Perceived      | I feel Blu's mobile banking service is safe to use                                                  | PS1 |
| Security       | I feel Blu mobile banking has strong security features                                              | PS2 |
| (PS)           | I believe transactions through Blu mobile banking are protected<br>and safe                         | PS3 |
| Behavioral     | I intend to continue using Blu's mobile banking services in the future                              | BI1 |
| (BI)           | I will always try to use Blu mobile banking in my daily life                                        | BI2 |
| ()             | I predict I will use BLU mobile banking in the future                                               | BI3 |
| Use Behavior   | l often use <i>Blu</i> 's mobile banking services                                                   | UB1 |
| (UB)           | I often use Blu mobile banking services to make payment                                             | UB2 |
|                | transactions                                                                                        |     |
|                | transactions                                                                                        | UB3 |
|                | I prefer to use Blu mobile banking instead of other digital bank<br>mobile banking                  | UB4 |

**2183** | Dalung Bojong in The Construction of a Hierarchical System of Regulations

The population of this study is the number of BLU *mobile banking users* in Indonesia. According to PT BCA Digital's 2022 annual report, there are 1.1 million customers (Annual Report, 2022)who utilize Blu's *mobile banking* services and will make up the population in this study. This study uses a *Non Probability Sampling approach*, the sampling technique does not provide equal opportunities or opportunities to every member of the population when selected as a sample (Ghozali & Latan, 2015). The sampling method of this study is *purposive sampling*, with the criteria of being a BLU *mobile banking* user.

Researchers applied the Slovin formula to determine the total sample

size of the entire population of BCA Digital customers.

$$n = \frac{N}{N(d)^2 + 1}$$
$$n = \frac{1.100.000}{1.100.000(0.05)^2 + 1}$$

n = 400

In this study, researchers applied primary data types. Primary data is a

data source that directly provides data to the data collector. In its implementation for the primary data collection process, researchers obtained questionnaires to BCA Digital customers who were used as samples in the study.

# Validity Test

The validity test parameters in this study are:

| Table 1. Validity Test Parameter |                  |                            |  |  |  |  |  |
|----------------------------------|------------------|----------------------------|--|--|--|--|--|
| Validity Test                    | Parameter        | Rule of Thumbs             |  |  |  |  |  |
| Convergent Validity              | Loading Factor   | > 0.70                     |  |  |  |  |  |
|                                  | Average Variance | > 0.50                     |  |  |  |  |  |
|                                  | Extracted (AVE)  |                            |  |  |  |  |  |
| Discriminant Validity            | Cross Loading    | > 0.70 for each variable   |  |  |  |  |  |
|                                  | AVE Square Root  | The square root of AVE $>$ |  |  |  |  |  |
|                                  |                  | from the correlation       |  |  |  |  |  |
|                                  |                  | between latent constructs  |  |  |  |  |  |

#### **Reliability Test**

The reliability test parameters in this study are:

#### Table 2. Reliability Test Parameter

| · · · · · · · · · · · · · · · · · · · |                       |                |  |  |  |  |
|---------------------------------------|-----------------------|----------------|--|--|--|--|
| Reliability Test                      | Parameter             | Rule of Thumbs |  |  |  |  |
| Reliability                           | Cronbach's Alpha      | > 0.70         |  |  |  |  |
|                                       | Composite Reliability | > 0.50         |  |  |  |  |

| Structural Model Test (Inner Model) | The test parameters of the            |
|-------------------------------------|---------------------------------------|
|                                     | structural model in this study are:   |
| Tabel 3. Inner Mode                 | el Test Parameter                     |
| Parameter                           | Rule of Thumbs                        |
| R-Square R>                         | 0,75 (strong), 0,50>R>0,75(moderate), |

|          | R<0,25 (weak)                         |
|----------|---------------------------------------|
| Q-Square | Q>0                                   |
| F-Square | F>0,35 (big), 0,15>F>0,35 (moderate), |
|          | F<0.15 (weak)                         |



**RESULT AND DISCUSSION** 

**Measurement Model (Outer Model)** 

Figure 2 SmartPLS Testing Research Model

# **Convergent Validity**

Convergent validity relates to the principle that measurements of a construct should be highly correlated. Convergent validity occurs when scores obtained from two different instruments that measure the same construct have a high correlation. Validity indicators can be measured using outer loading scores. Outer loadings is a table that contains loading factors to show the magnitude of the correlation between indicators and latent variables. If the outer loading value is more than 0.70 (>0.70) then the indicator can be used. In addition, validity can be measured by the AVE Value which describes the magnitude of variance or diversity of manifest variables that can be possessed by latent constructs. The Average Variance Extracted (AVE) value that meets the minimum criteria is greater than 0.50 (>0.50). **Valid** 

| Leave it variable | Construct | Loading | Conclusion | AVE   | Conclusion |  |  |  |
|-------------------|-----------|---------|------------|-------|------------|--|--|--|
|                   | Variables | Factor  |            |       |            |  |  |  |
| Performance       | PE1       | 0.772   | Valid      | 0.695 | Valid      |  |  |  |
| Expectancy        | PE2       | 0.851   | Valid      |       |            |  |  |  |

# Table 4. Loading Factor and AVE value

|                        | PE3 | 0.871 | Valid |       |       |
|------------------------|-----|-------|-------|-------|-------|
|                        | PE4 | 0.837 | Valid |       |       |
| Effort Expectancy      | EE1 | 0.825 | Valid | 0.662 | Valid |
|                        | EE2 | 0.788 | Valid |       |       |
|                        | EE3 | 0.841 | Valid |       |       |
|                        | EE4 | 0.799 | Valid |       |       |
| Social Influence       | SI1 | 0.957 | Valid | 0.935 | Valid |
|                        | SI2 | 0.968 | Valid |       |       |
|                        | SI3 | 0.975 | Valid |       |       |
| Facilitating Condition | FC1 | 0.817 | Valid | 0.639 | Valid |
| -                      | FC2 | 0.789 | Valid |       |       |
|                        | FC3 | 0.792 | Valid |       |       |
| Hedonic Motivation     | HM1 | 0.834 | Valid | 0.672 | Valid |
|                        | HM2 | 0.845 | Valid |       |       |
|                        | HM3 | 0.778 | Valid |       |       |
| Price Value            | PV1 | 0.806 | Valid | 0.701 | Valid |
|                        | PV2 | 0.865 | Valid |       |       |
|                        | PV3 | 0.840 | Valid |       |       |
| Habit                  | HB1 | 0.816 | Valid | 0.698 | Valid |
|                        | HB2 | 0.840 | Valid |       |       |
|                        | HB3 | 0.849 | Valid |       |       |
| Personal               | PI1 | 0.857 | Valid | 0.686 | Valid |
| Innovativeness         | PI2 | 0.786 | Valid |       |       |
|                        | PI3 | 0.839 | Valid |       |       |
| Perceived Security     | PS1 | 0.808 | Valid | 0.725 | Valid |
| -                      | PS  | 0.895 | Valid |       |       |
|                        | PS3 | 0.848 | Valid |       |       |
| Behavioral intention   | BI1 | 0.816 | Valid | 0.721 | Valid |
|                        | BI2 | 0.861 | Valid |       |       |
|                        | BI3 | 0.869 | Valid |       |       |
| Use Behavior           | UB1 | 0.797 | Valid | 0.637 | Valid |
|                        | UB2 | 0.848 | Valid |       |       |
|                        | UB3 | 0.804 | Valid |       |       |
|                        | UB4 | 0.740 | Valid |       |       |

Based on the table above, it is known that there are all indicators that have a loading factor value of > 0.700 so that these indicators are valid and can be used in this study. All variables have an AVE value of > 0.500 so that the variables are valid and can be used in this study.

#### **Discriminant Validity**

Discriminant validity testing is carried out to prove whether the indicator in a construct will have the largest loading factor in the construct formed than the loading factor with other constructs This can be known through the Forner-lacker criteria value or can also use values in the cross loading table. **2187** | Dalung Bojong in The Construction of a Hierarchical System of Regulations

| Table 5. Fornell-Lacker value<br>Value Fornell – Lacker |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                         | BI    | EE    | FC    | HB    | НМ    | PS    | PE    | PI    | PV    | SI    | UB    |
| BI                                                      | 0.849 |       |       |       |       |       |       |       |       |       |       |
| EE                                                      | 0.533 | 0.813 |       |       |       |       |       |       |       |       |       |
| FC                                                      | 0.467 | 0.502 | 0.799 |       |       |       |       |       |       |       |       |
| HB                                                      | 0.641 | 0.469 | 0.382 | 0.835 |       |       |       |       |       |       |       |
| НМ                                                      | 0.652 | 0.578 | 0.531 | 0.650 | 0.820 |       |       |       |       |       |       |
| PS                                                      | 0.506 | 0.518 | 0.465 | 0.387 | 0.420 | 0.851 |       |       |       |       |       |
| PE                                                      | 0.579 | 0.405 | 0.449 | 0.580 | 0.611 | 0.338 | 0.834 |       |       |       |       |
| PI                                                      | 0.510 | 0.478 | 0.398 | 0.434 | 0.471 | 0.347 | 0.398 | 0.828 |       |       |       |
| PV                                                      | 0.580 | 0.602 | 0.505 | 0.537 | 0.650 | 0.576 | 0.436 | 0.448 | 0.837 |       |       |
| SI                                                      | 0.320 | 0.377 | 0.382 | 0.256 | 0.344 | 0.356 | 0.384 | 0.249 | 0.453 | 0.967 |       |
| UB                                                      | 0.656 | 0.473 | 0.421 | 0.735 | 0.632 | 0.435 | 0.614 | 0.436 | 0.576 | 0.374 | 0.798 |

Based on the table above, it is known that the value of the correlation relationship between variables in each latent construct in this study has a higher value when compared to the correlation between other variables contained in this study. So it can be concluded that there is no problem of multicollinarity between latent variables.

|     | Table 6. Cross Loadings |       |       |       |         |          |       |       |       |       |       |
|-----|-------------------------|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|
|     |                         |       |       | Va    | lue Cro | ss Loadi | ings  |       |       |       |       |
|     | BI                      | EE    | FC    | HB    | НМ      | PS       | PE    | ΡΙ    | PV    | SI    | UB    |
| BI1 | 0.816                   | 0.510 | 0.415 | 0.518 | 0.551   | 0.491    | 0.436 | 0.401 | 0.589 | 0.315 | 0.531 |
| BI2 | 0.861                   | 0.416 | 0.401 | 0.582 | 0.570   | 0.402    | 0.573 | 0.466 | 0.446 | 0.299 | 0.638 |
| BI3 | 0.869                   | 0.434 | 0.373 | 0.528 | 0.538   | 0.397    | 0.456 | 0.426 | 0.444 | 0.192 | 0.488 |
| EE1 | 0.451                   | 0.825 | 0.412 | 0.408 | 0.451   | 0.396    | 0.377 | 0.392 | 0.475 | 0.208 | 0.380 |
| EE2 | 0.442                   | 0.788 | 0.388 | 0.394 | 0.482   | 0.415    | 0.294 | 0.400 | 0.517 | 0.324 | 0.375 |
| EE3 | 0.428                   | 0.841 | 0.423 | 0.343 | 0.482   | 0.471    | 0.328 | 0.393 | 0.547 | 0.403 | 0.400 |
| EE4 | 0.410                   | 0.799 | 0.410 | 0.380 | 0.464   | 0.404    | 0.317 | 0.367 | 0.414 | 0.296 | 0.383 |
| FC1 | 0.364                   | 0.452 | 0.817 | 0.303 | 0.406   | 0.358    | 0.341 | 0.347 | 0.399 | 0.282 | 0.335 |
| FC2 | 0.401                   | 0.434 | 0.789 | 0.288 | 0.436   | 0.377    | 0.335 | 0.223 | 0.430 | 0.330 | 0.293 |
| FC3 | 0.357                   | 0.321 | 0.792 | 0.323 | 0.431   | 0.380    | 0.399 | 0.382 | 0.382 | 0.304 | 0.378 |
| HB1 | 0.590                   | 0.472 | 0.342 | 0.816 | 0.601   | 0.336    | 0.523 | 0.372 | 0.500 | 0.226 | 0.640 |
| HB2 | 0.511                   | 0.303 | 0.261 | 0.840 | 0.478   | 0.247    | 0.431 | 0.332 | 0.333 | 0.103 | 0.577 |
| HB3 | 0.499                   | 0.390 | 0.348 | 0.849 | 0.541   | 0.383    | 0.492 | 0.379 | 0.503 | 0.308 | 0.620 |
| HM1 | 0.633                   | 0.578 | 0.478 | 0.526 | 0.834   | 0.433    | 0.483 | 0.383 | 0.579 | 0.305 | 0.529 |
| HM2 | 0.492                   | 0.420 | 0.410 | 0.540 | 0.845   | 0.278    | 0.531 | 0.389 | 0.480 | 0.255 | 0.508 |
| HM3 | 0.448                   | 0.389 | 0.405 | 0.539 | 0.778   | 0.294    | 0.496 | 0.392 | 0.531 | 0.282 | 0.518 |
| PE1 | 0.566                   | 0.414 | 0.324 | 0.588 | 0.542   | 0.243    | 0.772 | 0.277 | 0.350 | 0.114 | 0.601 |
| PE2 | 0.438                   | 0.285 | 0.391 | 0.460 | 0.476   | 0.292    | 0.851 | 0.369 | 0.352 | 0.408 | 0.475 |
| PE3 | 0.469                   | 0.328 | 0.436 | 0.436 | 0.518   | 0.352    | 0.871 | 0.374 | 0.413 | 0.455 | 0.492 |
| PE4 | 0.424                   | 0.294 | 0.349 | 0.410 | 0.477   | 0.239    | 0.837 | 0.314 | 0.330 | 0.348 | 0.443 |
| PI1 | 0.541                   | 0.518 | 0.433 | 0.415 | 0.486   | 0.390    | 0.394 | 0.857 | 0.512 | 0.379 | 0.402 |

Timothy Hans Wijaya, Siska Noviaristanti

| PI2 | 0.315 | 0.225 | 0.222 | 0.346 | 0.287 | 0.226 | 0.284 | 0.786 | 0.256 | 0.087 | 0.347 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PI3 | 0.366 | 0.395 | 0.294 | 0.299 | 0.362 | 0.210 | 0.290 | 0.839 | 0.289 | 0.084 | 0.324 |
| PS1 | 0.429 | 0.450 | 0.367 | 0.342 | 0.339 | 0.808 | 0.294 | 0.291 | 0.458 | 0.204 | 0.340 |
| PS2 | 0.419 | 0.391 | 0.413 | 0.320 | 0.378 | 0.895 | 0.291 | 0.288 | 0.484 | 0.345 | 0.366 |
| PS3 | 0.443 | 0.478 | 0.407 | 0.326 | 0.355 | 0.848 | 0.278 | 0.306 | 0.525 | 0.358 | 0.403 |
| PV1 | 0.469 | 0.489 | 0.409 | 0.439 | 0.558 | 0.435 | 0.338 | 0.298 | 0.806 | 0.334 | 0.472 |
| PV2 | 0.475 | 0.503 | 0.446 | 0.483 | 0.564 | 0.484 | 0.395 | 0.442 | 0.865 | 0.366 | 0.524 |
| PV3 | 0.511 | 0.517 | 0.414 | 0.429 | 0.514 | 0.522 | 0.362 | 0.383 | 0.840 | 0.433 | 0.451 |
| SI1 | 0.328 | 0.393 | 0.371 | 0.252 | 0.351 | 0.356 | 0.371 | 0.231 | 0.441 | 0.957 | 0.364 |
| SI2 | 0.287 | 0.354 | 0.365 | 0.258 | 0.328 | 0.338 | 0.376 | 0.257 | 0.435 | 0.968 | 0.352 |
| SI3 | 0.309 | 0.344 | 0.371 | 0.232 | 0.317 | 0.337 | 0.367 | 0.235 | 0.436 | 0.975 | 0.367 |
| UB1 | 0.613 | 0.462 | 0.399 | 0.534 | 0.548 | 0.441 | 0.548 | 0.414 | 0.512 | 0.434 | 0.797 |
| UB2 | 0.558 | 0.335 | 0.384 | 0.581 | 0.492 | 0.340 | 0.560 | 0.350 | 0.442 | 0.277 | 0.848 |
| UB3 | 0.481 | 0.378 | 0.279 | 0.614 | 0.520 | 0.342 | 0.452 | 0.279 | 0.433 | 0.259 | 0.804 |
| UB4 | 0.438 | 0.333 | 0.277 | 0.618 | 0.456 | 0.263 | 0.395 | 0.349 | 0.449 | 0.221 | 0.740 |

Based on the table above, it can be seen that all variable constructs of each latent variable have a higher correlation value when compared to the correlation of other variable constructs. From this it can be concluded that the indicators used in this study are valid because the discriminant validity is met.

Reliability Test (Cronbach's Alpha and Composite Reliability)

Cronbach's Alpha measures the lower limit of the reliability value of an while composite reliability item, measures the true value of the reliability of a construct. Therefore, a reliability test must be performed to find out if each item on the questionnaire meets the reliability criteria. A variable construct is considered reliable if it has a composite reliability value above 0.70 and Cronbach's alpha above 0.60.

| Variabel                | Cronbach's Alpha | <b>Composite Reliability</b> |
|-------------------------|------------------|------------------------------|
| Performance Expectancy  | 0.854            | 0.901                        |
| Effort Expectancy       | 0.829            | 0.887                        |
| Social Influences       | 0.965            | 0.977                        |
| Facilitating Conditions | 0.718            | 0.842                        |
| Hedonic Motivation      | 0.760            | 0.860                        |
| Price Value             | 0.787            | 0.875                        |
| Habit                   | 0.784            | 0.874                        |
| Personal Innovativeness | 0.775            | 0.867                        |
| Perceived Security      | 0.809            | 0.888                        |
| Behavioral intention    | 0.806            | 0.886                        |
| Use Behavior            | 0.809            | 0.875                        |

| Tabel 7. Cronbach's Alpha and Composite Reliability Val | ue |
|---------------------------------------------------------|----|
|---------------------------------------------------------|----|

From the table above, it can be seen that each variable produces a

Cronbach's alpha value and a composite reliability value greater than 0.7 so that

all indicators are declared reliable in measuring the variable.

# Inner Model

#### R Square Analysis (R2)

Square R (R2) analysis is performed on each endogenous latent variable indicating what degree of endogenous the influence latent variable receives from each exogenous variable contributing to it. The coefficient of determination is used to

measure the accuracy of predictions (estimations). In general, an R2 value of 0.75 is considered to have a large estimation accuracy, an R2 of 0.50 has a moderate accuracy estimation, and an R2 value of 0.25 has a low estimation accuracy. The result of the value of the coefficient of determination can be found in the following table. 0.

|  |  | L |
|--|--|---|
|  |  | s |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

| Tabel 8. R-square Value |                 |                   |  |  |  |
|-------------------------|-----------------|-------------------|--|--|--|
| Variabel Laten          | <b>R-square</b> | R-square adjusted |  |  |  |
| Behavioral intention    | 0.593           | 0.584             |  |  |  |
| Use Behavior            | 0.606           | 0.602             |  |  |  |

R2 Use Behavior model estimation accuracy 0.602. Based on this value, it has an estimation of **Medium** accuracy. In other words, Effort Expectancy, Facilitating Conditions, Habit, Hedonic Motivation, Perceived Security, Performance Expectancy, Personal Innovativeness, Price Value, Social Influences and Behavioral intention influenced 60.2% while the remaining

F Square Analysis (F2)

39.8% were influenced by other factors outside the research model.

#### Q Square Analysis (Q2)

The Stone-Geisser value Q2 is used to test how well the model produces values and to find out the estimated parameters. If  $Q^2 > 0$  indicates the model has predictive relevance and if the Q2 model < 0 indicates the model has no predictive relevance.

#### Q<sup>2</sup> Variabel Laten Behavioral intention 0.413 Use Behavior 0.377 Based on the test results in the F Square analysis is used to assess table above, it can be seen that the the effect of the independent variable on constructive model of Behavioral the dependent variable. In general, the intention has a Q<sup>2</sup> of 0.413 and Use Behavior so that it has a predictive value.

value of 0.02 is considered to have a small affect size, 0.15 has a medium affect size and 0.35 has a large affect size.

| Tabel 10. F-square Value                        |          |             |  |  |  |
|-------------------------------------------------|----------|-------------|--|--|--|
| Variable Laten                                  | F-Square | Information |  |  |  |
| Performance Expectancy -> Behavioral intention  | 0.036    | Small       |  |  |  |
| Effort Expectancy -> Behavioral intention       | 0.0003   | Small       |  |  |  |
| Social Influences -> Behavioral intention       | 0.001    | Small       |  |  |  |
| Facilitating Conditions -> Behavioral intention | 0.001    | Small       |  |  |  |

Tabel 9. Q-square Value

| Hedonic Motivation -> Behavioral intention      | 0.029  | Small |
|-------------------------------------------------|--------|-------|
| Price Value -> Behavioral intention             | 0.006  | Small |
| Habit -> Behavioral intention                   | 0.068  | Small |
| Personal Innovativeness -> Behavioral intention | 0.031  | Small |
| Perceived Security -> Behavioral intention      | 0.038  | Small |
| Facilitating Conditions -> Use Behavior         | 0.0013 | Small |
| Habit -> Use Behavior                           | 0.382  | Big   |
| Personal Innovativeness -> Use Behavior         | 0.004  | Small |
| Behavioral intention -> Use Behavior            | 0.087  | Small |
|                                                 |        |       |

Based on the table above, the test results in the table above can be seen that the influence of Habit on Use Behavior has the largest contribution with the value of the constructive model affect size F2 of 0.382 and is classified as having a large estimating value. The effect of Performance Expectancy, Effort Expectancy, Social Influences, Facilitating Conditions, Hedonic Motivation, Habit, Price Value, Personal Innovativeness, Perceived Security on Behavioral intention has a small estimation value with a constructive model value affect size F2 < 0.15. The effect of *Facilitating* Conditions, Habit, Perceived Security, Behavioral intention on Use Behavior has a small estimation value with a constructive model value affect size F2 < 0.15.

#### Goodness of Fit Index (GoF Index)

Goodness of Fit (GoF) is a measurement of fit indexes to evaluate measurement models and structural models and also provides a simple measurement for the entirety of the model's predictions. Index measurement at this stage results in the validity of a variable from exogenous variables and endogenous variables. The Goodness of Fit Index (GoF) has three assessment categories, namely 1) 0.1 for low GoF values, 2) 0.25 for medium GoF values, and 3) 0.36 for high GoF values. The following are the results of the Goodness of Fit (GoF) test in table 4.25, as follows:

| Variable                | <b>R-Square</b> | Average Variance Extracted<br>(AVE) |
|-------------------------|-----------------|-------------------------------------|
| Performance Expectancy  |                 | 0.721                               |
| Effort Expectancy       |                 | 0.662                               |
| Social Influences       |                 | 0.639                               |
| Facilitating Conditions |                 | 0.698                               |
| Hedonic Motivation      |                 | 0.672                               |
| Price Value             |                 | 0.725                               |
| Habit                   |                 | 0.695                               |
| Personal Innovativeness |                 | 0.686                               |
| Perceived Security      |                 | 0.701                               |
| Behavioral intention    | 0.584           | 0.935                               |
| Use Behavior            | 0.602           | 0.637                               |
| Rata-Rata               | 0.593           | 0.706                               |

| Tabel 11. Gof Index V |
|-----------------------|
|-----------------------|

# GoF = √AVE x √R2 GoF = √0.706 x √0.593 GoF = 0.647

Based on the table above, the results of calculating the value of the Gof test value in the table above, it is known that the GoF value of the research model of 0.647 or 64.7% is classified as high. This value proves that this research model has the performance of measurement models and structural models, which are large (very good).

#### **Hypothesis Testing**

Coefficient analysis of structural models is used to test hyposis by knowing which relationships have a significant effect. If the p-value < a (0.05) then the relationship is significant, otherwise if the p-value > a (0.05) then the relationship is not significant. Here are the calculations from hypothesis testing:

| Hypothes | Path Coefficient               | Original   | T Statistics | P Values | Informatio |
|----------|--------------------------------|------------|--------------|----------|------------|
| ys       |                                | Sample (O) | ( O/STDEV )  |          | n          |
| H1       | Performance Expectancy ->      | 0.167      | 3.106        | 0.002    | Aceepted   |
|          | Behavioral intention           |            |              |          |            |
| H2       | Effort Expectancy ->           | 0.053      | 0.986        | 0.325    | Rejected   |
|          | Behavioral intention           |            |              |          |            |
| H3       | Social Influences ->           | -0.021     | 0.502        | 0.616    | Rejected   |
|          | Behavioral intention           |            |              |          |            |
| H4a      | Facilitating Conditions ->     | 0.019      | 0.442        | 0.659    | Rejected   |
|          | Behavioral intention           |            |              |          |            |
| H4b      | Facilitating Conditions -> Use | 0.083      | 2.013        | 0.045    | Aceepted   |
|          | Behavior                       |            |              |          |            |
| H5       | Hedonic Motivation ->          | 0.181      | 3.092        | 0.002    | Aceepted   |
|          | Behavioral intention           |            |              |          |            |
| H6a      | Habit -> Behavioral intention  | 0.238      | 4.431        | 0.000    | Aceepted   |
| H6b      | Habit -> Use Behavior          | 0.514      | 11.407       | 0.000    | Aceepted   |
| H7       | Price Value -> Behavioral      | 0.075      | 1.098        | 0.273    | Rejected   |
|          | intention                      |            |              |          |            |
| H8a      | Personal Innovativeness ->     | 0.137      | 2.544        | 0.011    | Aceepted   |
|          | Behavioral intention           |            |              |          |            |
| H8b      | Personal Innovativeness ->     | 0.046      | 1.150        | 0.251    | Rejected   |
|          | Use Behavior                   |            |              |          |            |
| H9       | Perceived Security ->          | 0.162      | 2.878        | 0.004    | Aceepted   |
|          | Behavioral intention           |            |              |          |            |
| H10      | Behavioral intention -> Use    | 0.264      | 5.404        | 0.000    | Aceepted   |
|          | Behavior                       |            |              |          |            |

#### Tabel 12. Hypothesis Testing

Based on the diataws table, the conclusion of the results of hypothesis testing is obtained, by comparing the results of p value with a value above can be drawn the following conclusions:

1. *Performance Expectancy* -> *Behavioral intention* has a P value of 0.002 smaller than 0.05. Based on this value, it can be known that there is a significant positive influence.

Timothy Hans Wijaya, Siska Noviaristanti

- 2. Effort Expectancy -> Behavioral intention has a P Values of 0.325 greater than 0.05. Based on this value, it can be known that there is an insignificant positive influence.
- 3. Social Influences -> Behavioral intention has a P value of 0.616 greater than 0.05. Based on this value, it can be known that there is an insignificant positive influence.
- 4. Facilitating Conditions -> Behavioral intention has a P Values of 0.659 greater than 0.05. Based on this value, it can be known that there is an insignificant positive influence.
- 5. Facilitating Conditions -> Use Behavior has a P Values of 0.045 smaller than 0.05. Based on this value, it can be known that there is a significant positive influence.
- 6. *Hedonic Motivation -> Behavioral intention* has a P value of 0.002 less than 0.05. Based on this value, it can be known that there is a significant positive influence.
- 7. *Habit-> Behavioral intention* has a P value of 0.000 less than 0.05. Based on this value, it can be known that there is a significant positive influence.

- 8. *Habit-> Use Behavior* has a P Values of 0.000 smaller than 0.05. Based on this value, it can be known that there is a significant positive influence.
- Price Value -> Behavioral intention has a P value of 0.273 greater than 0.05. Based on this value, it can be known that there is an insignificant positive influence.
- 10.Personal Innovativeness -> Behavioral intention has a P value of 0.011 less than 0.05. Based on this value, it can be known that there is a significant positive influence.
- 11.Personal Innovativeness -> Use Behavior has a P Values of 0.251 greater than 0.05. Based on this value, it can be known that there is an insignificant positive influence.
- 12.Perceived Security -> Behavioral intention has a P Values of 0.004 less than 0.05. Based on this value, it can be known that there is a significant positive influence.
- 13.*Behavioral intention -> Use Behavior* has a P value of 0.000 less than 0.05. Based on this value, it can be known that there is a significant positive influence.

| Path Coefficient                                                   | Original<br>Sample (O) | T Statistics | P Values | Information |
|--------------------------------------------------------------------|------------------------|--------------|----------|-------------|
| Performance Expectancy ->                                          | 0.044                  | 2.505        | 0.013    | Accepted    |
| Behavioral intention -> Use<br>Behavior                            |                        |              |          | ·           |
| Effort Expectancy -> Behavioral<br>intention -> Use Behavior       | 0.014                  | 0.986        | 0.325    | Rejected    |
| Social Influence -> Behavioral<br>intention -> Use Behavior        | -0.005                 | 0.491        | 0.623    | Rejected    |
| Facilitating Conditions -> Behavioral<br>intention -> Use Behavior | 0.005                  | 0.443        | 0.658    | Rejected    |
| Hedonic Motivation -> Behavioral<br>intention -> Use Behavior      | 0.048                  | 2.587        | 0.010    | Accepted    |
| Habit -> Behavioral intention -><br>Use Behavior                   | 0.063                  | 3.407        | 0.001    | Accepted    |

#### Table 13. Indirect Hypothesis Testing

| Price Value -> Behavioral intention - | 0.020 | 1.001 | 0.317 | Rejected |
|---------------------------------------|-------|-------|-------|----------|
| > Use Behavior                        |       |       |       |          |
| Personal Innovativeness ->            | 0.036 | 2.441 | 0.015 | Accepted |
| Behavioral intention -> Use           |       |       |       |          |
| Behavior                              |       |       |       |          |
| Perceived Security -> Behavioral      | 0.043 | 2.812 | 0.005 | Accepted |
| intention -> Use Behavior             |       |       |       |          |
|                                       |       |       |       |          |

**2193** | Dalung Bojong in The Construction of a Hierarchical System of Regulations

- 1. Performance Expectancy -> Behavioral intention -> Use Behavior has a P Values value of 0.013 smaller than 0.05. Based on these values, it can be seen that Performance Expectancy affects Use Behavior through Behavioral intention as an intervening variable.
- 2. Effort Expectancy -> Behavioral intention -> Use Behavior has a P Values value of 0.325 greater than 0.05. Based on this value, it can be seen that Effort Expectancy does not affect Use Behavior through Behavioral intention as an intervening variable
- 3. Social Influence -> Behavioral intention -> Use Behavior has a P Values value of 0.623 greater than 0.05. Based on these values, it can be seen that Social Influence does not affect Use Behavior through Behavioral intention as an intervening variable
- 4. Facilitating Condition -> Behavioral intention -> Use Behavior has a P Values value of 0.658 greater than 0.05. Based on these values, it can be seen that Facilitating Condition does not affect Use Behavior through Behavioral intention as an intervening variable
- 5. Hedonic Motivation -> Behavioral intention -> Use Behavior has a P Values value of 0.01 smaller than 0.05. Based on these values, it can be seen that Hedonic Motivation affects

*Use Behavior* through *Behavioral intention* as an intervening variable

- 6. Habit -> Behavioral intention -> Use Behavior has a P Values value of 0.001 smaller than 0.05. Based on these values, it can be seen that Habit affects Use Behavior through Behavioral intention as an intervening variable
- 7. Price Value -> Behavioral intention -> Use Behavior has a P Value of 0.317 greater than 0.05. Based on these values, it can be seen that Price Value does not affect Use Behavior through Behavioral intention as an intervening variable
- Personal Innovativeness -> Behavioral intention -> Use Behavior has a P value of 0.015 smaller than 0.05. Based on these values, it can be seen that Personal Innovativeness affects Use Behavior through Behavioral intention as an intervening variable.
- Perceived Security -> Behavioral intention -> Use Behavior has a P Values of 0.005 smaller than 0.05. Based on these values, it can be seen that Perceived Security affects Use Behavior through Behavioral intention as an intervening variable

# CONCLUSION

Based on the results of research and SEM analysis that has been conducted regarding the UTAUT-3 model and Perceived Security on the use of BLU mobile banking for PT BCA Digital customers, several conclusions can be drawn to answer the questions in this study as follows:

Performance Expectancy (PE) has a significant positive effect on the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Effort Expectancy (EE) does not affect the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Social Influence (SI) does not affect the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Facilitating Condition (FC) does not affect the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Hedonic Motivation (HM) has a significant positive effect on the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Habit (HB) has a significant positive effect on the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Price Value (PV) does not affect the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Personal Innovativeness (PI) has a significant positive effect on the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Perceived Security (PS) has a significant positive effect on the Behavioral Intention (BI) of PT BCA Digital customers in adopting BLU mobile banking services.

Facilitating Condition (FC) has a significant positive effect on the Use

Behavior (UB) of PT BCA Digital customers in adopting BLU mobile banking services.

Habit (HB) has a significant positive effect on the Use Behavior (UB) of PT BCA Digital customers in adopting BLU mobile banking services.

Personal Innovativeness (PI) does not affect the Use Behavior (UB) of PT BCA Digital customers in adopting BLU mobile banking services.

Behavioral Intention (BI) has a significant positive effect on the Use Behavior (UB) of PT BCA Digital customers in adopting BLU mobile banking services.

Performance Expectancy, Hedonic Motivation, Habit, Personal Innovativeness and Perceived Security affect the behavior of using BLU mobile banking services by PT BCA Digital customers with intervening Behavioral Intention.

The R Square value of Behavioral Intention is 58.4% and Use Behavior is 60%, indicating that there are 40% influences from other variables that were not included in this study which are factors that influence the adoption of BLU mobile banking use by PT BCA Digital customers.

# REFERENCES

Almaiah, M. A., Al-Otaibi, S., Shishakly, R., Hassan, L., Lutfi, A., Alrawad, M., Qatawneh, M., & Alghanam, O. A. (2023). Investigating the role of perceived risk, perceived security and perceived trust on smart mbanking application using SEM. *Sustainability*, 15(13), 9908.

Annual Report. (2022). https://bcadigital.co.id/documents/ AnnualReport2022.pdf.

Apaua, R., & Lallie, H. S. (2022).

Measuring user perceived security of mobile banking applications. arXiv preprint arXiv:2201.03052.

- Awaluddin, M., Santosa, A. M. B., & Noviaristanti, S. (2022). Analysis of E-Wallet's Factor Adoption in Food and Beverage Business.
- Bisnis Indonesia. (2019). https://bisnisindonesia.id/article/da ftar-10-aplikasi-bank-digitalpaling-banyak-diunduh.
- Farooq, M. S., Salam, M., Jaafar, N., Fayolle, A., Ayupp, K., Radovic-Markovic, M., & Sajid, A. (2017). Acceptance and use of lecture capture system (LCS) in executive business studies: Extending UTAUT2. Interactive Technology and Smart Education, 14(4), 329-348.
- Ghozali, I., & Latan, H. (2015). Partial least squares konsep, teknik dan aplikasi menggunakan program smartpls 3.0 untuk penelitian empiris. Semarang: Badan Penerbit UNDIP, 4(1).
- Ha, H.-Y., & Pan, H. (2018). The evolution of perceived security: the temporal role of SNS information perceptions. Internet Research, 28(4), 1055-1078.
- katadata. (2022). https://databoks.katadata.co.id/dat apublish/2022/07/08/survei-bank-

jago-jadi-aplikasi-bank-digitalpaling-populer.

katadata.

- (2023). https://databoks.katadata.co.id/dat apublish/2023/07/05/transaksidigital-banking-di-indonesiatumbuh-158-dalam-5-tahunterakhir.
- Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59, 101151.
- Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif Dan R&D. Alfabeta.
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425–478.
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157–178.
- Wazid, M., Zeadally, S., & Das, A. K. (2019). Mobile banking: evolution and threats: malware threats and security solutions. IEEE Consumer Electronics Magazine, 8(2), 56–60.



© 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (https://creativecommons.org/licenses/by-sa/4.0/)