

THE SELECTION OF WEAPON SYSTEMS IN THE A2/AD (ANTI ACCESS/AREA DENIAL) STRATEGY AT INDONESIA'S STRATEGIC CHOKE POINTS BY USING THE ANALYTICAL HIERARCHY PROCESS (AHP) METHOD

Tri Yudha Ismanto¹ Fathurrohman Umar² Setyanggono Eko Lutvie³ Udayana Agung⁴ Prasetyo Hari⁵ Midhio I Wayan⁶ Yusgiantoro Purnomo⁷ The Republic of Indonesia Defense University, Indonesia *Corresponding Author E-mail: tri.ismanto@doktoral.idu.ac.id

ABSTRACT: This article utilizes the Analytical Hierarchy Process (AHP) method to decide how to choose an effective weapon system for the A2/AD (anti-access/area denial) strategy at the Sunda Strait, Indonesia's strategic choke point. The main discussion is limited to selecting the types of weapon systems considered effective in implementing A2/AD at Indonesia's strategic choke points. The next step is to decide which primary, secondary, and alternative criteria are the most important. Each of these will then be put together mathematically by measuring consistency using the Consistency Index (CI), the Consistency Ratio (CR), and the Consistency Hierarchy, which is the ranking as the result of the analysis. This method resulting in a weight for the navigation criteria of 66%, projection of 19%, and operability of 16%. Furthermore, in conclusion, the order of the best weapon systems is RBS15 MK4 with a weight of 66%, Brahmos II at 18%, and Neptune 360ST at 16%.

Keywords: Weapon Systems, Selection, Indonesia, A2/AD strategy, Choke Points, Analytical Hierarchy Process (AHP)

INTRODUCTION

The selection of *weapon systems* at choke *points* for A2/AD (*Anti Access/Area Denial*) strategies is very important because it can affect the ability to maintain security and defense of strategic areas (Satriananda & Manfaat, 2015). The A2/AD (*Anti Access/Area Denial*) strategy is a military approach that aims to deter or impede enemy access to a specific area or areas (Russell, 2017). This strategy is designed to reduce the enemy's ability to operate or enter certain territory by using a

combination of defensive and offensive tactics. It includes the use of various defensive weapon systems such as antiship missiles, surface-to-air missiles, surface-to-surface missiles, sea mines, air defense systems, and coastal defense systems.

The main objective of the A2/AD strategy is to maximize the geographical and technological advantages of those defending the region (Dobija, 2021). For example, Indonesia's strategic choke points are the Sunda Strait, Makassar Strait, Lombok Strait, and other straits which are the Indonesian Archipelago Sea Channel (ALKI). In addition, one of the objectives of the A2/AD strategy is also, in addition to preventing the choke point area from being used by irresponsible parties, also to provide a sense of security to shipping users so that the wheels of the Indonesian economy continue to run.

Indonesia as an archipelagic country certainly has waters where there are strategic points or *choke points* that can be a threat if exploited by foreign powers. So that the *choke point* becomes a key terrain that must be occupied and controlled by Indonesia. Indonesian Minister of Defense Prabowo Subianto initiated the implementation of the A2/AD strategy by issuing Minister of Defense Regulation No. 14 of 2023 concerning the State Defense Policy Strategy for 2023 with the aim of realizing defense strengthening in Indonesia's *strategic* choke point area (Peraturan.go.id, 2023).

The document explains that there are nine (9) strategic choke points which are trade routes that are widely used by international commercial fleets are the which also Indonesian Archipelago Sea Channel (ALKI) (Figure 1). Thus, a strategic policy emerged about the need for a permanent title of security elements and missiles that are ready throughout the year to carry out anti-access tasks at Indonesia's strategic choke points. For this reason, of course, it must be supported by adequate resources, including the selection of ideal defense equipment at each strategic choke point in Indonesia where each choke point has different characteristics.

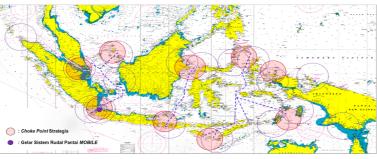


Figure 1. Nine Choke Point Strategic Indonesia

Tri Yudha Ismanto¹ Fathurohman Umar² Setyanggono Eko Lutvie³ Udayana Agung⁴ Prasetyo Hari⁵ Midhio I Wayan⁶ Yusgiantoro Purnomo⁷ | 1420

In fulfilling the needs of the available force to carry out the A2 / AD task, based on Presidential Regulation No. 66 of 2019 Article 63 paragraph 1 that this is one of the tasks of the Navy Marine Corps, namely organizing Coast Defense Operations (Ops Hantai) (Saputro et al., 2021). Furthermore, to support the task in coastal defense operations in this case in the *choke point* region, there are three types of weapons systems that are selected in carrying out the task, namely the Indian-made

Ш guided missile, Brahmos the Ukrainian-made Neptune 360 ST Rocket System, and the Swedish-made RBS 15 MK 4 listed in table 1. All three weapon systems have relatively similar armament characteristics. However, the selection of weapon systems must be in accordance with the needs and adjust to the contours of the region and must consider foreign policy relations with producing countries to be one of the important components in making the right decision.

Aspect	Brahmos II	Neptune 360 ST Rocket System	RBS 15 MK 4
Country	India	Ukraina	Swedia
Lenght & Diameter	8.40 M / 0.60 M	5.05 M / 0.40 M	4.35 M / 0.50 M
Width Span	-	1.30 M	1.40 M
Weight (With Boosters)	3.000 Kg	Ca 870 Kg	Ca 810 Kg
Seeker	Active Radar Homing	-	Active Radar
Speed	2,8 Mach	1000 – 1050 Km/H	0.9 Mach (Subsonic)
Range	290 Km	Up To 300 Km	>300 Km
Warhead	~200 Kg	~150 Kg	~200 Kg
Trajectory	3D Waypoints	3D Waypoints	Multiple 3D Waypoints
Navigation	INS, GPS/ GLONASS/ GAGAN Satellite Guidance	GPS and INS	INS and Anti-Jam GPS
Service Life	> 10 Years	10 Years	15 Years
Launch Platforms	Aircraft, Ships and Trucks	Aircraft, Ships and Trucks	Aircraft, Ships and Trucks
Interopability (C4ISR)	-	-	Siskom KRI
Price per unit	\$ 14.000.000	\$ 1.000.000	\$ 4.285.000
Price 1 Baterai	8 Rudal Bhramos 1 MCP 2 MAL@ 2 Rudal 1 <i>Workshop Vehicle</i>	60 Rudal Neptune 1 MCP-360 1 USPL-360 1 R-360 TLC-360 (RK- 360 item) 1 TLV-360 1 TV-360 1 SGE (1 Set /Rai = \$	32 Rudal RBS 15 + 2 untuk uji 1 <i>Mobile</i> C3 <i>system</i> 4 Kendaraan Taktis Peluncur @ 4 Rudal 4 Kendaraan Pengangkut @ 4 Rudal
Total Price	\$ 130.000.000 Sumbor: Diolah da	4.160.000) \$ 67.200.000 ri Berbagai Sumber	\$ 241.000.000

Table 1. Comparison of Three Hantai Missile Weapon Systems to Choose

In this article, the discussion of strategic decision making in the selection of the right and effective Weapon System in the A2 / AD (Anti Access / Area Denial) strategy at the Indonesian strategic choke point is the main one based on relevant decisionmaking theories and using the Analytical Hierarchy Process (AHP) methodology.

This article also limits the strategic *choke point* as the sample in this study is the Sunda Strait, which is a strait that separates the island of Java from the island of Sumatra. Then, the selection of the Sunda Strait as a sample was motivated by two things, namely the Decree of the Minister of Transportation of the Republic of Indonesia on May 29, 2020 concerning the Establishment of a Route System in the Sunda Strait which stipulates a Traffic Separation Scheme (TSS) in the Sunda Strait to improve shipping security and safety (Yulianto, 2022), and considering geographical conditions with a water area of 8,138 km2, with a northern width of \pm 24km with a depth of \pm 80m and a width of the southern part of \pm 100km with a depth of ± 1575m (Danial et al., 2020). Thus, research is needed on the need for an ideal *weapon system* to be able to reach the entire waters in the Sunda Strait.

Figure 2. Traffic Separation Schemes (TSS) Selat Sunda (Kristiyono et al., 2021)

Furthermore, the discussion of this research is limited only to the decision-making process in the selection of weapon systems by considering several relevant factors and continued with the AHP method in prioritizing the main, second, and alternative criteria, each of which will be in the mathematical synthesis process by measuring consistency, namely the Consistency Index (CI), and Consistency Ratio (CR). Further, because of the analysis and conclusions, the final

weight and ranking values will be presented in this article.

METHOD

Data Collection Methods Studi Pustaka

In collecting relevant theories related to the problems in this article, the author conducts a literature study by studying research that has been done previously and studying references that have important information for this article. Tri Yudha Ismanto¹ Fathurohman Umar² Setyanggono Eko Lutvie³ Udayana Agung⁴ Prasetyo Hari⁵ Midhio I Wayan⁶ Yusgiantoro Purnomo⁷ [1422]

Field Studies

Data collection through sources from previous journals, open sources, and using questionnaire methods to find initial data in determining the criteria needed. At the stage of collecting data regarding criteria information obtained from questionnaires through google form media with respondents from 30 *experts* in the field of defense in Indonesia.

In determining the main criteria, respondents were asked to choose 3 main criteria. After the 3 main criteria are selected, the respondent selects and determines 3 sub-criteria each of the 3 main criteria and alternative weapon systems related to the criteria that the respondent has determined.

Data Processing Methods

After collecting data from the questionnaire, the data processing stage is then carried out to obtain paired comparison values where these values will be processed using the *Analytical Hierarchy Process* (AHP) method for decision making support systems in choosing ideal and effective weapons at Indonesia's *strategic* Choke Point.

RESULTS AND DISCUSSION

Based on the analysis in the previous section, the following are the results of the analysis on the hierarchical structure as presented in figure 6 below.

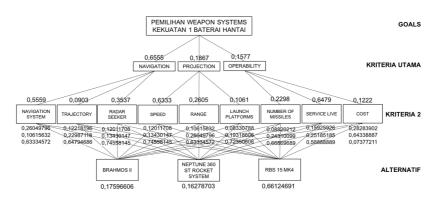


Figure 3. Results of Analysis on Hierarchical Structure Using *Analytical Hierarchy Process* (AHP) Method

Determining the Final Weight Value of the Criterion

The results of the AHP analysis shown in table 18 show the weight values for each criterion and the final weight because of the multiplication of each weight value from level I, level II and level III. Level I is the weighted value of the main criteria, namely *Navigation* 66%, *Projection* 19%, and *Operability* 16% according to table 2.

At level 2, the order of each subcriterion of the main criteria of *Navigation* is obtained namely *navigation system* 56%, *trajectory* 9%, *radar seeker* 35% as shown in table 6. The sub-criteria of the main Projection criteria *are* speed 63%, range 26%,

launch platforms 11% are shown in table 7. And the sub-criteria of the main criteria of *Operability* are *number* of *missiles* 23%, *service life* 65%, and *cost* 12% according to table 1. While level III is the weight value of the Alternative criteria with the Main Criteria and Sub Criteria displayed in table 2 to table 3.

Furthermore, to find out the final weight is by multiplying the value in the

main criteria weight column multiplied by the value in the subcriteria weight column multiplied by the value in the alternate weight column, it will produce the value in the final weight column as shown in table 2.

Bobot akhir = Bobot level 1 x Bobot level 2 x Bobot level 3

			. Final Weig			
THE WEIGHT OF EACH LEVEL LEVEL 1 LEVEL 2 LEVEL 3		-				
MAIN CRITERIA	WEIGHT	SECOND CRITERIO N	WEIGHT	ALTERNATI VE	WEIGHT	- FINAL WEIGHT
				BRAHMOS II	0.2604979 56	0.0949261 36
		Navigatio n system	0.5559269 16	NEPTUNE 360 S	0.1061563 24	0.0386836 42
				RBS15 MK4	0.6333457 2	0.2307928 35
				BRAHMOS II	0.1221819 65	0.0072361 72
NAVIGATIO N	0.6554865 42	Trajector y	0.0903520 5	NEPTUNE 360 S	0.2298711 76	0.0136140 18
				RBS15 MK4	0.6479468 6	0.0383743 63
				BRAHMOS II	0.1201170 78	0.0278502 71
		Radar seeker	0.3537210 34	NEPTUNE 360 S	0.1343014 75	0.0311390 56
				RBS15 MK4	0.7455814 48	0.1728700 5
				brahmos II	0.1201170 78	0.0142070 86
	0.1867494 82	Speed	0.6333457 2	NEPTUNE 360 S	0.1343014 75	0.0158847 74
				RBS15 MK4	0.7455814 48	0.0881851 26
			0.2604979	brahmos II	0.1061563 24	0.0051642 78
		Rande	56	NEPTUNE 360 S	0.2604979 56	0.0126726 68

Tri Yudha Ismanto¹ Fathurohman Umar² Setyanggono Eko Lutvie³ Udayana Agung⁴ Prasetyo Hari⁵ Midhio I Wayan⁶ Yusgiantoro Purnomo⁷ [1424]

				RBS15 MK4	0.6333457	0.0308109
				BRAHMOS	2 0.0833078	13 0.0016515
			0.1061563 N 24 3		83	49
		Launch Platforms		NEPTUNE 360 S	0.1931860 6	0.0038298 44
				RBS15 MK4	0.7235060 57	0.0143432 46
		Number		BRAHMOS II	0.0882021 2	0.0031986 84
OPERABIITY 0.15776 75		Number of Missiles	0.2298711 76	NEPTUNE 360 S	0.2431009 85	0.0088161 52
	0.1577639 75			RBS15 MK4	0.6686968 95	0.0242505 54
			0.6479468 6	BRAHMOS II	0.1592592 59	0.0162799 07
				NEPTUNE 360 S	0.2518518 52	0.0257449 69
				RBS15 MK4	0.5888888 89	0.0601977 96
				BRAHMOS II	0.2828390 2	0.0054519 8
	Cost	Cost	0.1221819 65	NEPTUNE 360 S	0.6433888 7	0.0124019 07
			RBS15 MK4	0.0737721 1	0.0014220 25	

Source: Processed by Author

CONCLUSION

In the decision-making theory of Harold Koontz and Cyril O'Donnell, choosing between two or more options is essential for careful planning, such as in data analysis regarding the percentage of selection of three types of *Weapon Systems* that are appropriate and effective faced with the contours of Indonesia's geographical area and other operational requirements. The analysis used the Analytical Hierarchy Process (AHP) method by Thomas L. Saaty with final weighting with *Simple Additive Weighting* (SAW) so that the ranking of the three weapon *systems* was found from the sum of the final weight of each *weapon system*.

Next, the ranking is determined by summing the final weight values of each *weapon system* on each key criterion as shown in table 2. For *weapon systems*, Brahmos II scored on the main criteria:

Navigation:	0,094926136 + 0,007236172 + 0,027850271	= 0,130012579
Projection:	0,014207086 + 0,005164278 + 0,001651549	= 0,021022912

Operability:	0,003198684 + 0,016279907 + 0,00545198		= 0,024930572
		Total	= 0,17596606

For *weapon systems*, the Neptune 360 ST scored the total final weight on key criteria:

Navigation:	0,038683642 + 0,013614018 + 0,031139056	= 0,08343672
Projection:	0,015884774 + 0,012672668 + 0,003829844	= 0,032387285
Operability:	0,008816152 + 0,025744969 + 0,012401907	= 0,046963029
	Total	= 0,16278703

For *weapon systems*, the RBS15 MK4 scores the total final weight on the main criteria:

Navigation:	0,230792835 + 0,038374363 + 0,17287005	= 0,442037248
Projection:	0,088185126+ 0,030810913+ 0,014343246	= 0,133339285
Operability:	0,024250554 + 0,060197796 + 0,001422025	= 0,085870375
	Total	= 0,66124691

From the results of the analysis, it can be concluded that the selection of *weapon systems* from the three available units can be sorted by rank are (1) RBS 15 MK4 (66%), (2) Brahmos II (18%), and (3) Neptune 360 ST (16%) as shown in table 19. So that the choice of the best weapon system *based on the selection of the AHP method fell to the RBS 15 MK4 weapon system made in Sweden.*

 Table 3. Weapon System Rating After Analyst Using Analytical Hierarchy Process (AHP)

 Method

	wethou		
Weapon Systems	Bobot	Persentase	Rank
RBS 15 MK4	0,66124691	66%	1
BRAHMOS II	0,17596606	18%	2
NEPTUNE 360 ST	0,16278703	16%	3

Source: Processed by Author

However, it is important to note that the implementation of A2/AD must consider other aspects such as diplomatic and economic aspects so as not to excessively disrupt maritime trade routes, which can have a negative impact on the Indonesian economy. In addition, the geographical contours of each strategic choke point have their own uniqueness, so the selection of weapon systems at each choke point must be analyzed in accordance with operational Tri Yudha Ismanto¹ Fathurohman Umar² Setyanggono Eko Lutvie³ Udayana Agung⁴ Prasetyo Hari⁵ Midhio I Wayan⁶ Yusgiantoro Purnomo⁷ [1426]

requirements. Therefore, in addition to careful strategic planning, multilateral cooperation can help maintain the necessary balance between defense aspects and economic growth in the region.

REFERENCE

- Danial, D., Sitamala, A., & Belardo, B. (2020). Keamanan Dan Pertahanan Di Selat Sunda, Studi Alur Laut Kepulauan Indonesia. *Jurnal Idea Hukum*, 6(1).
- Dobija, K. (2021). The Political and Military Aspects of Creating Anti-Access/Area-Denial Systems (A2/Ad): The Example of China and Russia. *Safety & Defense, 2,* 22–39.
- Kristiyono, K., Maarif, S., & Madjid, M. A. (2021). Peran Nyata Pusat Hidro-Oseanografi Tni Angkatan Laut Dalam Penanggulangan Bencana. *Jurnal Pertahanan Dan Bela Negara*, *11*(1), 81–92.
- Peraturan.go.id. (2023). Peraturan Menteri Pertahanan Nomor 14

Tahun 2023 Tentang Strategi Pertahanan Negara.

- Russell, A. L. (2017). *Strategic A2/AD in Cyberspace*. Cambridge University Press.
- Saputro, R. D., Ibrahim, A. L., & Abimanyu, A. (2021). Pemutakhiran Peta Tematik Pendaratan Menggunakan Perangkat Lunak CARIS PCC 2.15: Updating Landing Thematic Map Using CARIS PCC 2.15 Software. *Jurnal Hidropilar*, *7*(2), 155–166.
- Satriananda, A. J., & Manfaat, I. D. (n.d.). Studi Pengembangan Desain Kapal Frigate Jenis Mrlf Sebagai Infrastruktur Pertahanan Laut Di Indonesia Khususnya Wilayah Perairan Natuna.
- Yulianto, Y. (2022). Hak Lintas Damai Berdasarkan United Nation Convention On The Law Of The Sea (UNCLOS) 1982 dan Keputusan Menteri Perhubungan Nomor Km 130 Tahun 2020 Tentang Penetapan Sistem Rute di Selat Sunda. Jurnal Universal Technic, 1(1), 95–105.

© 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (<u>https://creativecommons.org/licenses/by-sa/4.0/</u>)