THE INFLUENCE OF MACROECONOMIC FACTORS ON HUMAN DEVELOPMENT INDEX AND POVERTY RATE IN BANGKA BELITUNG ISLANDS PROVINCE

Ernesth Cancerio Reynaldo1*
Darwati Susilastuti2
Meirinaldi3
Universitas Borobudur, Indonesia
E-mail: ec.reynaldo@gmail.com1*, darwati_susilastuti@borobudur.ac.id2, Meirinaldi2505@gmail.com3
Correspondence: ec.reynaldo@gmail.com1

Abstract: Background: The Human Improvement File is a marker used to quantify one of the significant perspectives connected with the nature of monetary advancement results, to be specific the level of human improvement in view of three pointers, in particular wellbeing, training accomplished, and expectations for everyday comforts. Poverty is a condition of the population who is unable to meet the minimum basic needs for a decent life. Poverty results in a decrease in the quality of human resources which is a global problem in development.

Aim: This study expects to examine the impact of Territorial Unique Income, Capital Use and Financial Development (Gross domestic product) on the Human Advancement File and Destitution Levels in the Rule/City of the Bangka Belitung Islands Region in 2017-2021.

Method: The insightful technique utilized is board information relapse with the Normal Impact Model methodology through e-sees 10 programming.

Finding: The consequences of this study demonstrate that Territorial Unique Income, Capital Consumptions and Monetary Development (Gross domestic product) to some extent fundamentally affect the Human Improvement File, and Provincial Unique Income and Financial Development (Gross domestic product) to some degree essentially affect the Neediness Level, while Capital Uses affect the Destitution Level. All the while, Territorial Unique Income, Capital Uses and Financial Development (Gross domestic product) essentially affect the Human Advancement Record and Destitution Levels in the Rule/City of the Bangka Belitung Islands Region in 2017-2021.

Keywords: Regional Original Revenue, Capital Expenditure, Economic Growth (GDP), Human Development Index, Poverty Level

INTRODUCTION

Financial development is one of the large scale markers to see truly monetary execution in a district. The pace of monetary development is determined in light of changes in Gross domestic product at consistent costs for the year being referred to contrasted with the earlier year. Monetary development should be visible as an expansion in how much labor and products delivered by all business fields

of financial movement in a space during a year. Positive development shows that the economy has advanced contrasted with the earlier year, while negative development delineates that the economy has diminished contrasted with the earlier year. In light of consistent 2010 costs, the Gross domestic product worth of the Bangka Belitung Islands Territory in 2021 has expanded contrasted with 2020. The increment was driven by expanded creation in all business fields.

The GDP value at constant 2010 prices for the Bangka Belitung Islands Province in 2021 will reach IDR 55.36 trillion, an increase compared to 2020 which amounted to IDR 52.70 trillion. This shows that in 2021 the economy of the Bangka Belitung Islands Territory will develop by 5.05%, an increment contrasted with the earlier year’s monetary development which shrunk by 2.30%. The Gross domestic product worth of the Bangka Belitung Islands Territory, based on current prices in 2021, reaches IDR 85.94 trillion. In nominal terms, this GDP value has increased by 13.84% compared to 2020 which reached IDR 75.50 trillion.

Meanwhile, the added value that can be created by all business fields in the Bangka Belitung Islands Province in 2021 which is calculated at constant prices (ADHK-GDP) reaches IDR 55.36 trillion, an increase compared to 2020 which reached IDR 52.70 trillion. ADHK-GDP growth is commonly referred to as economic growth, which describes an increase in real production without being affected by inflation in the Bangka Belitung Islands Province. Beginning around 2020 the Coronavirus pandemic has raised a ruckus around town local area and an affects the economy, including the economy of the Bangka Belitung Islands Region. Because of the Coronavirus pandemic, the economy of the Bangka Belitung Islands Region in 2020 which was determined from ADHK Gross domestic product development had encountered a constriction of 2.30%. In any case, in 2021, the economy of the Bangka Belitung Islands Region has figured out how to resuscitate and develop by 5.05%. This is affected by the development that happens in all business handles that make up the economy of the Bangka Belitung Islands Area.

<table>
<thead>
<tr>
<th>Year</th>
<th>Regency/City</th>
<th>Regional Original Income (IDR Billion)</th>
<th>Capital Expenditure (IDR Billion)</th>
<th>ADHK-GDP (IDR Billion)</th>
<th>Human Development Index (%)</th>
<th>Poverty Level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Pangkalpinang City</td>
<td>173.95</td>
<td>251.13</td>
<td>8,358.48</td>
<td>76.86</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka</td>
<td>196.07</td>
<td>217.32</td>
<td>9,355.33</td>
<td>71.09</td>
<td>5.10</td>
</tr>
</tbody>
</table>
The Influence Of Macroeconomic Factors On Human Development Index And Poverty Rate In Bangka Belitung Islands Province Province

<table>
<thead>
<tr>
<th>Year</th>
<th>Area</th>
<th>HDI</th>
<th>GDP</th>
<th>HPI</th>
<th>PPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Reg. Bangka Barat</td>
<td>78.49</td>
<td>143.44</td>
<td>9,673.71</td>
<td>67.94</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Tengah</td>
<td>97.38</td>
<td>133.79</td>
<td>5,620.61</td>
<td>68.99</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Selatan</td>
<td>84.71</td>
<td>174.75</td>
<td>5,763.87</td>
<td>65.02</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung</td>
<td>193.20</td>
<td>211.15</td>
<td>5,969.67</td>
<td>70.93</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung Timur</td>
<td>109.66</td>
<td>107.11</td>
<td>5,110.30</td>
<td>69.57</td>
</tr>
<tr>
<td></td>
<td>Pangkalpinang City</td>
<td>167.13</td>
<td>227.83</td>
<td>8,782.79</td>
<td>77.43</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka</td>
<td>173.06</td>
<td>105.76</td>
<td>9,778.03</td>
<td>71.80</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Barat</td>
<td>69.77</td>
<td>147.13</td>
<td>10,177.20</td>
<td>68.68</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Tengah</td>
<td>76.00</td>
<td>191.74</td>
<td>5,812.70</td>
<td>69.52</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Selatan</td>
<td>49.43</td>
<td>229.15</td>
<td>6,024.21</td>
<td>65.98</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung</td>
<td>191.94</td>
<td>206.96</td>
<td>6,290.86</td>
<td>71.70</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung Timur</td>
<td>109.46</td>
<td>173.68</td>
<td>5,326.12</td>
<td>70.22</td>
</tr>
<tr>
<td></td>
<td>Pangkalpinang City</td>
<td>155.12</td>
<td>251.12</td>
<td>9,069.28</td>
<td>77.97</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka</td>
<td>144.67</td>
<td>189.67</td>
<td>10,058.79</td>
<td>72.39</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Barat</td>
<td>67.75</td>
<td>173.35</td>
<td>10,895.22</td>
<td>69.05</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Tengah</td>
<td>88.85</td>
<td>158.21</td>
<td>5,883.10</td>
<td>70.33</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Selatan</td>
<td>62.94</td>
<td>222.52</td>
<td>6,176.84</td>
<td>66.54</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung</td>
<td>177.67</td>
<td>235.90</td>
<td>6,500.42</td>
<td>72.46</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung Timur</td>
<td>111.25</td>
<td>149.64</td>
<td>5,499.98</td>
<td>70.84</td>
</tr>
<tr>
<td></td>
<td>Pangkalpinang City</td>
<td>140.96</td>
<td>162.80</td>
<td>8,796.58</td>
<td>78.22</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka</td>
<td>155.73</td>
<td>133.63</td>
<td>9,987.14</td>
<td>72.40</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Barat</td>
<td>64.30</td>
<td>141.86</td>
<td>10,310.64</td>
<td>69.08</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Tengah</td>
<td>85.20</td>
<td>131.58</td>
<td>5,714.89</td>
<td>70.45</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka Selatan</td>
<td>50.21</td>
<td>152.88</td>
<td>6,057.04</td>
<td>66.90</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung</td>
<td>162.13</td>
<td>139.69</td>
<td>6,352.03</td>
<td>72.51</td>
</tr>
<tr>
<td></td>
<td>Reg. Belitung Timur</td>
<td>102.16</td>
<td>83.17</td>
<td>5,464.77</td>
<td>70.92</td>
</tr>
<tr>
<td></td>
<td>Pangkalpinang City</td>
<td>168.86</td>
<td>188.18</td>
<td>9,611.88</td>
<td>78.57</td>
</tr>
<tr>
<td></td>
<td>Reg. Bangka</td>
<td>153.97</td>
<td>185.98</td>
<td>10,733.70</td>
<td>72.46</td>
</tr>
</tbody>
</table>
As far as the development pace of Provincial Unique Income (ROR) for the Bangka Belitung Islands Area in 2017-2021 there have been variances. In 2020 the ROR of the Bangka Belitung Islands Region has diminished from 2019, in particular 17.33%. The decrease in ROR came from a decrease in regional taxes of 19.37% and regional fees of 25.43% which was due to restrictions on community movement activities due to the conditions of the Covid-19 pandemic. Furthermore, in 2021 the ROR of the Bangka Belitung Islands Province will experience a growth of 26.2%. The greatest ROR income part is nearby duty income which comes to 92.68% of the complete ROR. Local duty incomes come from engine vehicle charge, motor vehicle ownership transfer fee, motor vehicle fuel tax, tax on collection and utilization of underground water and cigarette tax. The largest share of local tax revenues in the first quarter of 2021 came from motor vehicle taxes which reached 40.92% or IDR 59.53 billion. Motor vehicle fuel tax revenues reached IDR 45.59 billion with a share of 29.96% of the total regional tax revenues. Meanwhile, motor vehicle transfer fees reached Rp 27.58 billion with a share of 18.96% of the total regional tax revenue. This condition is in line with the increase in the number of new vehicle registrations, both two-wheeled and four-wheeled. The trend of increasing new vehicle registrations has been going on since the fourth quarter of 2020, after declining significantly in the second quarter of 2020. Registration of new four-wheeled vehicles in the first quarter of 2021 increased by 1.39%, while two-wheeled vehicles increased by 24.15% compared to the previous quarter. In the second quarter of 2021 it is estimated that new vehicle registrations will increase, especially four-wheeled vehicles in line with the central government’s policy of exempting sales tax on luxury goods for certain vehicles for the period March-May 2021. This condition is expected to increase regional tax revenues. In addition, the Provincial Government of the Bangka Belitung Islands has also consistently implemented various policy programs to increase vehicle tax revenues such as local samsat, mobile samsat, tax counseling through the media, and others. Meanwhile, in terms of the

Reg. Bangka Barat	59.69	119.62	10,331.79	69.60	2.75
Reg. Bangka Tengah	76.87	115.48	5,986.90	70.89	5.13
Reg. Bangka Selatan	63.33	149.56	6,275.55	67.06	3.69
Reg. Belitung	185.89	86.71	6,710.01	72.57	7.15
Reg. Belitung Timur	117.86	96.10	5,713.65	71.42	7.20

Source: https://babel.bps.go.id
growth rate of capital expenditures in 2019, it was 28.51%, an increase from 2018. Realization of capital expenditures in 2021 has decreased from 2020. This is due to the refocusing and reallocation of expenditures which are still being carried out as support for the continuity of the handling of Covid-19 and economic recovery public.

The human advancement record in the Bangka Belitung Islands Area has improved from one year to another with a typical development of 0.61% during the 2017-2021 period. The HDI value of the Bangka Belitung Islands Province is 71.69 in 2021, or a growth of 0.31% compared to 2020. The slowdown in growth is the impact of the Covid-19 pandemic which requires schools to be carried out online, the declining quality of public health and declining quality of life standards worthy of society. These three things are the basic dimensions that serve as indicators and benchmarks for HDI growth in a region. In addition, Indonesia’s macroeconomic problem which has always been in the spotlight is poverty. Poverty is the most fundamental and multidimensional problem for a country. In general, poverty is a condition in which a person is financially unable to meet the average standard of living of the people in an area. The percentage of poor people in the Bangka Belitung Islands Province has decreased by 4.67% in September 2021 compared to the previous period which was 4.90%. This is in line with the decline in the poverty rate at the national level, which was 10.14% in March 2021 to 9.71% in September 2021. Nationally, Bangka Belitung is in second place, the same as DKI Jakarta after South Kalimantan for provinces with the percentage of poor people the lowest in September 2021. On the other hand, the per capita poverty line in Bangka Belitung reaches IDR 770,457 per capita per month. This poverty line is the highest compared to other provinces, while the national average poverty line is only IDR 486,168. In line with that, the Bangka Belitung Islands Region is additionally recorded to have the least gini proportion in Indonesia, which is 0.247. This demonstrates that the degree of pay imbalance in the Bangka Belitung Islands Area is very low. The percentage of poor people (population below the poverty line) in the Bangka Belitung Islands Province for the September 2021 period was 4.67% (69.70 thousand people), a decrease compared to the September 2020 period of 4.89% (72.05 thousand people). During the period September 2020 – September 2021, the number of poor people in urban and rural areas has decreased. In the period September 2020 – September 2021 the poverty line rose 5.96% from IDR 727,114 per capita per month in September 2020 to IDR 770,457 per capita per month in September 2021. On the other hand, the poverty depth index and poverty severity index have decreased. The poverty depth index decreased from 0.77 in September 2020 to 0.56 in September 2021. The poverty depth index value indicates that the average expenditure of the poor is
getting closer to the poverty line. Meanwhile, the poverty severity index value was 0.17 in September 2020 to 0.11 in September 2021. The poverty depth index in rural areas was 0.71, while in urban areas it was 0.44 in September 2021. This shows that the expenditure of the poor in rural areas is farther away or deeper when measured from the poverty line compared to urban areas. Meanwhile, the Poverty Severity Index in rural areas was 0.12, higher than that in urban areas of 0.11 in September 2021. Based on the above problems, the research problem can be formulated as follows:

1) How does Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) simultaneously influence the Human Development Index (IPM) in the Bangka Belitung Islands Province in 2017-2021?

2) How does Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) partially affect the Human Development Index (IPM) in the Bangka Belitung Islands Province in 2017-2021?

3) How does Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) simultaneously influence the Poverty Level in the Bangka Belitung Islands Province in 2017-2021?

4) How does Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) partially affect on the Poverty Rate in the Bangka Belitung Islands Province in 2017-2021?

In view of detailing of the inquiries over, the system basic this exploration can be depicted in Figure 1.

Figure 1. Research Framework

![Diagram of research framework](image)

Information:

- **→** Partial influence
- **- - - - -** Simultaneous influence

The hypothesis based on Figure 1 can be derived from the research hypothesis as follows:

H1: Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP)
The Influence Of Macroeconomic Factors On Human Development Index And Poverty Rate In Bangka Belitung Islands Province Province

simultaneously influence the Human Development Index (IPM) in the Bangka Belitung Islands Province in 2017-2021.

H2: Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) have a partial effect on the Human Development Index (IPM) in the Bangka Belitung Islands Province in 2017-2021.

H3: Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) simultaneously affect the Poverty Level in the Bangka Belitung Islands Province in 2017-2021.

H4: Regional Original Revenue (ROR), Capital Expenditure and Economic Growth (GDP) partially affect the Poverty Rate in the Bangka Belitung Islands Province in 2017-2021.

METHOD

The population and sample utilized in this study are information on Provincial Unique Income (ROR), Capital Consumption, Monetary Development (Gross domestic product), Human Improvement Record, and Neediness Rate in the Bangka Belitung Islands Region which are as of now accessible, distributed for later assortment and handled by specialists during 2017-2021.

The analysis technique utilized is different direct relapse investigation method, to ascertain the greatness of the impact of macroeconomic factors through the e-views10. The means in the numerous straight relapse examination are via completing the old style suspicion test, including the ordinariness test, autocorrelation test, and heteroscedasticity test. After the old style presumption test, a speculation test was done comprising of a t-test, F-test, and the coefficient of assurance (R2).

Model formulation based on the framework above, 2 econometric equation model formulations can be made, namely:

Equation model 1 : \[Y_1 = \alpha + \beta_{11} X_1 + \beta_{12} X_2 + \beta_{13} X_3 + \varepsilon \]
Equation model 2 : \[Y_2 = \alpha + \beta_{21} X_1 + \beta_{22} X_2 + \beta_{23} X_3 + \varepsilon \]

Operational definitions in this study are presented in Table 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Definitions and indicators</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Human Development Index (Y1)</td>
<td>Is a near proportion of future, proficiency, schooling, and expectations for everyday comforts of individuals in a space.</td>
<td>Ratio</td>
</tr>
</tbody>
</table>

The pointer utilized is The Human Improvement List information in the Regimes/Urban areas of the Bangka Belitung Islands Territory in 2017-2021.
2 Poverty Rate (Y_2) Is the level of the populace beneath the base destitution line in acquiring a satisfactory way of life in a space. The pointer utilized is information on the unfortunate populace list in the Rule/City of the Bangka Belitung Islands Region in 2017-2021.

3 Regional Revenue (X_1) Original Income originating from regional taxes, regional levies, and all rights that are recognized as an addition to the value of net assets in an area. The marker involved is information on Local Unique Income in the Rule/City of the Bangka Belitung Islands Area for 2017-2021.

4 Capital Expenditures (X_2) Is spending plan uses from a locale to get or add fixed resources as well as different resources that benefit more than one bookkeeping period (a year) and surpass the base capitalization esteem limit. The indicator used is Capital Expenditure data in the Regencies/Cities of the Bangka Belitung Islands Province for 2017-2021.

5 Economic Growth (X_3) Is an economic indicator to determine the economic condition in an area. The indicator used is Economic Growth (GDP) data in the Regencies/Cities of the Bangka Belitung Islands Province for 2017-2021.

RESULTS AND DISCUSSION

In light of the board information relapse model methodology with e-views10 (Normal Impact Model, Fixed Impact Model, and Arbitrary Impact Model) and the test that has been completed (Chow test) which shows that the relapse model that is more suitable to use in this review is Normal Impact Model. The aftereffects of board information relapse and t-test are introduced in Table underneath.
The Influence Of Macroeconomic Factors On Human Development Index And Poverty Rate In Bangka Belitung Islands Province Province

Table 3. Equation Model 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6.942682</td>
<td>0.591132</td>
<td>11.61534</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG(X1)</td>
<td>0.584846</td>
<td>0.038069</td>
<td>15.4843</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG(X2)</td>
<td>-0.160442</td>
<td>0.055702</td>
<td>-2.952921</td>
<td>0.0081</td>
</tr>
<tr>
<td>LOG(X3)</td>
<td>-0.808318</td>
<td>0.0565294</td>
<td>-12.37359</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.914036
Adjusted R-squared: 0.965717
S.E. of regression: 0.005024
Log likelihood: 34.32892
F-statistic: 100.9732
Prob(F-statistic): 0.000000

Based on the results above, the regression model is obtained as follows.

\[Y_1 = 6.925 + 0.565 X_1 - 0.160 X_2 - 0.808 X_3 + \varepsilon_1 \]

Model interpretation:

(1) The constant \(\alpha \) of 6.925 states that if the variable \(X_i \) is constant (\(X_1, X_2, \) and \(X_3 \)), then the variable \(Y_1 \) is 6.925.

(2) For every increase of 1 unit from \(X_1 \) will increase \(Y_1 \) by 0.565 assuming that other factors remain.

(3) For every increase of 1 unit from \(X_2 \) will decrease \(Y_1 \) by 0.160 assuming that other factors remain.

(4) For every increase of 1 unit from \(X_3 \) will decrease \(Y_1 \) by 0.808 assuming that other factors remain.

Table 4. Equation Model 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.494875</td>
<td>0.198695</td>
<td>18.03071</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG(X1)</td>
<td>0.679926</td>
<td>0.02633</td>
<td>5.004441</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG(X2)</td>
<td>0.006280</td>
<td>0.016953</td>
<td>0.370089</td>
<td>0.7384</td>
</tr>
<tr>
<td>LOG(X3)</td>
<td>0.043313</td>
<td>0.021254</td>
<td>2.037912</td>
<td>0.0502</td>
</tr>
</tbody>
</table>

R-squared: 0.699905
Adjusted R-squared: 0.651112
S.E. of regression: 0.031327
Log likelihood: 3.034323
F-statistic: 15.42984
Prob(F-statistic): 0.000000

Based on the results above, the regression model is obtained as follows.

\[Y_2 = 3.494 + 0.075 X_1 + 0.006 X_2 + 0.043 X_3 + \varepsilon_2 \]

Model interpretation:

(1) The constant \(\alpha \) of 3.494 states that if the variable \(X_i \) is constant (\(X_1, X_2, \) and \(X_3 \)), then the variable \(Y_2 \) is 3.494.
(2) For every increase of 1 unit from X_1 will increase Y_2 by 0.075 assuming that other factors remain.

(3) For every increase of 1 unit from X_2 will increase Y_2 by 0.006 assuming that other factors remain.

(4) For every increase of 1 unit from X_3 will increase Y_2 by 0.043 assuming that other factors remain.

The Classical Assumption Model

As per the reason for the exploration to be completed, specifically to figure out how the impact of Provincial Unique Income, Capital Consumption, and Monetary Development (Gross domestic product) has on the Human Advancement List and Neediness Rate in the Rules/Urban communities of the Bangka Belitung Islands Territory in 2017-2021, preceding information examination is done and testing the speculation will initially be tried on the presumptions in the relapse investigation, in particular testing the traditional suppositions which incorporate the ordinariness test, multicollinearity test, and heteroscedasticity test.

Equation Model 1:

1. Normality Assumption Test

![Figure 2. Normality Assumption Test Results](source)

The results obtained from the normality test are as follows.

- Hypothesis : H_0 : Residuals follow a normal distribution, and H_1 : Residuals do not follow a normal distribution.
- Test Statistics : Jarque-Bera = 0.738 and Probability = 0.691.
- Rejection area : If Probability < 0.05 then H_0 is rejected.
- Conclusion : Since the Likelihood esteem = 0.691 > 0.05, H_0 is acknowledged. So it tends to be reasoned that the residuals follow an ordinary circulation.

2. Multicollinearity Assumption Test
The influence of macroeconomic factors on human development index and poverty rate in Bangka Belitung Islands Province Province

Table 5. Multicollinearity Assumption Test Result

<table>
<thead>
<tr>
<th></th>
<th>LOG(X1)</th>
<th>LOG(X2)</th>
<th>LOG(X3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG(X1)</td>
<td>1.000000</td>
<td>0.160683</td>
<td>0.164130</td>
</tr>
<tr>
<td>LOG(X2)</td>
<td>0.160683</td>
<td>1.000000</td>
<td>0.185695</td>
</tr>
<tr>
<td>LOG(X3)</td>
<td>0.164130</td>
<td>0.185695</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Source: Author Processing Results, 2022

The outcomes acquired from the multicollinearity test are the coefficient values between factors less than 0.85. This is according to the test estimates that the results of the multicollinearity test show that there is no association coefficient between factors that is more than 0.85. So it will in general be construed that the data doesn’t have a multicollinearity issue.

3. Heteroscedasticity Assumption Test

Table 6. Heteroscedasticity Assumption Test Result

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood ratio</td>
<td>0.008401</td>
<td>5</td>
<td>0.2996</td>
</tr>
</tbody>
</table>

Source: Author Processing Results, 2022

The results obtained from the heteroscedasticity test with the Glejser method are as follows.

- Hypothesis: H_0: constant residual variance (heteroscedasticity does not occur), and H_1: residual variance is not constant (heteroscedasticity occurs).
- Test Statistics:
 - Likelihood ratio = 6.0684 and Probability = 0.2996.
 - Rejection area:
 - If the Prob. Likelihood ratio 0.2996 > 0.05 then H_1 is rejected.
- Conclusion:
 - Because all Prob. Likelihood ratio = 0.2996 > 0.05 then H_0 is accepted. So it tends to be presumed that the leftover fluctuation is steady so heteroscedasticity doesn’t happen.
Equation Model 2:
1. Normality Assumption Test

Figure 3. Normality Assumption Test Results
Source: Author Processing Results, 2022

The results obtained from the normality test are as follows.
- Hypothesis: H_0: Residuals follow a normal distribution, and H_1: Residuals do not follow normal distribution
- Test Statistics: Jarque-Bera = 0.657 and Probability = 0.720
- Rejection area: If Probability < 0.05 then H_0 is rejected
- Conclusion: Because the Probability value = 0.720 > 0.05, H_0 is accepted. So it can be concluded that the residuals follow a normal distribution.

2. Multicollinearity Assumption Test

Table 7. Multicollinearity Assumption Test Result

<table>
<thead>
<tr>
<th></th>
<th>LOG(X1)</th>
<th>LOG(X2)</th>
<th>LOG(X3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG(X1)</td>
<td>1.000000</td>
<td>0.168983</td>
<td>0.164130</td>
</tr>
<tr>
<td>LOG(X2)</td>
<td>0.168983</td>
<td>1.000000</td>
<td>0.165695</td>
</tr>
<tr>
<td>LOG(X3)</td>
<td>0.164130</td>
<td>0.165695</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Source: Author Processing Results, 2022

The outcomes acquired from the multicollinearity test are the coefficient values between factors less than 0.85. This is according to the test decides that the eventual outcomes of the multicollinearity test show that there is no association coefficient between factors that is more than 0.85. So it will in general be assumed that the data doesn't have a multicollinearity issue.

3. Heteroscedasticity Assumption Test
The results obtained from the heteroscedasticity test with the Glejser method are as follows.

- **Hypothesis**: H_0: constant residual variance (heteroscedasticity does not occur), and H_1: residual variance is not constant (heteroscedasticity occurs).
- **Test Statistics**:
 - Likelihood ratio = 2.3213 and Probability = 0.8031.
- **Rejection area**:
 - If the Prob. Likelihood ratio 0.8031 > 0.05 then H_1 is rejected.
- **Conclusion**:
 - Because all Prob. Likelihood ratio = 0.8031 > 0.05 then H_0 is accepted. So it can be concluded that the residual variance is constant so that heteroscedasticity does not occur.

Hypothesis Testing

Testing this speculation is surveyed by laying out the invalid speculation (H_0) and the elective speculation (H_1), measurable test research and ascertaining factual test values, working out theories, deciding the critical level and making inferences. Speculation testing in this review utilizes halfway testing (t-test) and synchronous testing (F-test) and the coefficient of assurance (R^2 test).

Equation Model 1:

1) Simultaneous testing (F-test)

Simultaneous testing is a test conducted to see whether a regression model that is formed as a whole is a significant model.

- **Hypothesis**:
 - $H_0 : \beta_1 = \beta_2 = \beta_3 = 0$
 - $H_1 : \text{at least 1 } \beta_j \neq 0 \text{ where } j = 1,2,3$
- **Test Statistics**:
 - F-statistic = 109.872 and Prob (F-statistic) = 0.000
- **Rejection area**:
 - If Prob (F-statistic) < 0.05 then H_0 is rejected
- **Conclusion**:
 - Because the Prob value (F-statistic) = 0.000 < 0.05, H_0 is rejected.
 - So it can be concluded that the regression model formed is significant.
2) Partial testing (t-test) regression model has an individual effect.

Partial testing is a test conducted to see whether a variable in the formed regression model has an individual effect.

(1) Testing for X_1
- Hypothesis
 - $H_0 : \beta_1 = 0$
 - $H_1 : \beta_1 \neq 0$
- Test Statistics
 - t-statistic = 14.554 and Prob (t-statistic) = 0.000
- Rejection area
 - If Prob (t-statistic) < 0.05 then H_0 is rejected
- Conclusion
 - Because the Prob value (t-statistic) = 0.000 < 0.05, H_0 is rejected. So it can be concluded that X_1 has a significant influence on Y_1.

(2) Testing for X_2
- Hypothesis
 - $H_0 : \beta_2 = 0$
 - $H_1 : \beta_2 \neq 0$
- Test Statistics
 - t-statistic = -2.829 and Prob (t-statistic) = 0.008
- Rejection area
 - If Prob (t-statistic) < 0.05 then H_0 is rejected
- Conclusion
 - Because the Prob value (t-statistic) = 0.008 < 0.05, H_0 is rejected. So it can be concluded that X_2 has a significant influence on Y_1.

(3) Testing for X_3
- Hypothesis
 - $H_0 : \beta_3 = 0$
 - $H_1 : \beta_3 \neq 0$
- Test Statistics
 - t-statistic = -12.380 and Prob (t-statistic) = 0.000
- Rejection area
 - If Prob (t-statistic) < 0.05 then H_0 is rejected
- Conclusion
 - Because the Prob value (t-statistic) = 0.000 < 0.05, H_0 is rejected. So it can be concluded that X_3 has a significant influence on Y_1.

3) The coefficient of determination (R^2)
Based on the results of the estimation of the regression parameters, an R-squared value of 0.914 is obtained, which means that the variables X_1, X_2, and X_3 affect the Y_1 variable by 91.4%, the remaining 8.6% is influenced by other variables that are not included in this research model.

Equation Model 2:
1) Simultaneous testing (F-test)

Simultaneous testing is a test conducted to see whether a regression model that is formed as a whole is a significant model.

- **Hypothesis**:

 $H_0 : \beta_1 = \beta_2 = \beta_3 = 0$

 $H_1 : \text{at least 1 } \beta_j \neq 0$ where $j = 1, 2, 3$

- **Test Statistics**

 t-statistic = 5.934 and Prob (t-statistic) = 0.000

- **Rejection area**

 If Prob (t-statistic) < 0.05 then H_0 is rejected

- **Conclusion**

 Because the Prob value (t-statistic) = 0.000 < 0.05, H_0 is rejected. So it can be concluded that X_1 has a significant influence on Y_2.

2) Partial testing (t-test)

Partial testing is a test conducted to see whether a variable in the formed regression model has an individual effect.

1) Testing for X_1

- **Hypothesis**

 $H_0 : \beta_1 = 0$

 $H_1 : \beta_1 \neq 0$

- **Test Statistics**

 t-statistic = 15.494 and Prob (F-statistic) = 0.000

- **Rejection area**

 If Prob (F-statistic) < 0.05 then H_0 is rejected

- **Conclusion**

 Because the Prob value (F-statistic) = 0.000 < 0.05, H_0 is rejected. So it can be concluded that the regression model formed is significant.
• Conclusion
 Because the Prob value (t-statistic) = 0.738 >0.05, H₀ is accepted. So it can be concluded that X₂ has not significant influence on Y₂.

(3) Testing for X₃
 • Hypothesis
 H₀ : β₃ = 0
 H₁ : β₃ ≠ 0
 • Test Statistics
 t-statistic = 2.038 and Prob (t-statistic) = 0.050
 • Rejection area
 If Prob (t-statistic) < 0.05 then H₀ is rejected
 • Conclusion
 Because the Prob value (t-statistic) = 0.050 =0.05, H₀ is rejected. So it can be concluded that X₃ has a significant influence on Y₂.

3) The coefficient of determination (R²)
 Based on the results of the estimation of the regression parameters, an R-squared value of 0.599 is obtained, which means that the variables X₁, X₂, and X₃ affect the Y₂ variable by 59.9%, the remaining 40.1% is influenced by other variables that are not included in this research model.

Model Feasibility Testing
 Considering the aftereffects of the four econometric model possibility tests (the decency of an econometric model) which incorporate hypothetical believability, exactness of the evaluations of the boundaries, logical capacity, and ability to estimate (Yuyun Wirasasmita, 2008), the resulting research model is feasible. that is:

 (1) Theoretical plausibility. The results of the author’s theory suitability test are presented in the following table.

<table>
<thead>
<tr>
<th>No.</th>
<th>Relationship Between Variables</th>
<th>Pre estimate</th>
<th>Post estimate</th>
<th>Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Effect of Regional Original Revenue (X₁) on the Human Development Index (Y₁).</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Effect of Capital Expenditures (X₂) on the Human Development Index (Y₁).</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Effect of Economic Growth (GDP) (X₃) on the Human Development Index (Y₁).</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The Effect of Regional Original Revenue (X_1) on the Poverty Level (Y_2).
Effect of Capital Expenditures (X_2) on Poverty Rate (Y_2).
Effect of Economic Growth (GDP) (X_3) on the Poverty Level (Y_2).

Based on the Table 9 above, it can be explained that the theoretical plausibility test shows that the model before and after the estimation for variables X_1, X_2, and X_3 for variable Y_1 is appropriate. And for variables X_1 and X_3 to variable Y_2 it is appropriate, while variable X_2 to Y_2 is not appropriate.

Table 10. Accuracy of the Estimate of The Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Equation Model 1</th>
<th>Equation Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>(X_1) p-value : 0,000 < α (0,05)</td>
<td>X_1 (X_1) p-value : 0,000 < α (0,05)</td>
</tr>
<tr>
<td>X_2</td>
<td>(X_2) p-value : 0,008 < α (0,05)</td>
<td>X_2 (X_2) p-value : 0,738 > α (0,05)</td>
</tr>
<tr>
<td>X_3</td>
<td>(X_3) p-value : 0,000 < α (0,05)</td>
<td>X_3 (X_3) p-value : 0,050 = α (0,05)</td>
</tr>
</tbody>
</table>

The assumptions of analysis are met and the probability of statistical error of the model is low (p-value < $\alpha = 0.05$) at X_1, X_2, and X_3 in Equation model 1, and at X_1 and X_3 in Equation model 2. While X_2 in Equation 2 does not meet the due diligence test which is accurate for future estimation because p-value = 0.738 > $\alpha = 0.05$.

Table 11. Explanatory Ability

<table>
<thead>
<tr>
<th>Partial Effect</th>
<th>Regression Coefficient (β)</th>
<th>Standard Error</th>
<th>$\frac{1}{2} \beta$</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation Model 1</td>
<td>X_1</td>
<td>0,565</td>
<td>0,039</td>
<td>0,282</td>
</tr>
<tr>
<td></td>
<td>X_2</td>
<td>-0,160</td>
<td>0,057</td>
<td>-0,080</td>
</tr>
<tr>
<td></td>
<td>X_3</td>
<td>-0,808</td>
<td>0,065</td>
<td>-0,404</td>
</tr>
<tr>
<td>Equation Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on the Table 11 above it can be explained that the explanatory ability test shows the standard error in Equation model 1 the partial effect of X_2 and X_3 is greater than $\frac{1}{2} \beta$, while the partial effect of X_1 is less than $\frac{1}{2} \beta$. And in Equation model 2 the partial effect of X_2 is greater than $\frac{1}{2} \beta$, while in the partial effect of X_1 and X_3 it is smaller and equal to $\frac{1}{2} \beta$.

(4) Forecasting ability. This implies that the subsequent examination model priority an exceptionally high prescient capacity on the worth of the reliant variable as demonstrated by the coefficient of assurance of the relapse model with a worth near or higher than half. The results of this study obtained the coefficient of determination is:

- In Equation model 1, Adjusted R-square is 90.57% > $\alpha = 50\%$.
- In Equation model 2, Adjusted R-square is 56.11% > $\alpha = 50\%$.

CONCLUSION

In view of information examination and speculation testing in this review it very well may be presumed that: 1). Regional Original Revenue (ROR) partially has a significant effect on the Human Development Index in the Bangka Belitung Islands Province in 2017-2021. 2). Capital Expenditure partially has a significant effect on the Human Development Index in the Bangka Belitung Islands Province in 2017-2021. 3). Economic Growth (GDP) partially has a significant effect on the Human Development Index in the Bangka Belitung Islands Province in 2017-2021. 4). Regional Original Revenue (ROR), Capital Expenditures, and Economic Growth (GDP) simultaneously have a significant effect on the Human Development Index in the Bangka Belitung Islands Province in 2017-2021. 5). Regional Original Revenue (ROR) partially has a significant effect on the Poverty Level in the Bangka Belitung Islands Province in 2017-2021. 6). Capital Expenditure partially has no significant effect on the Poverty Rate in the Bangka Belitung Islands Province in 2017-2021. 7). Economic Growth (GDP) partially has a significant effect on the Poverty Rate in the Bangka Belitung Islands Province in 2017-2021. 8). Regional Original Revenue (ROR), Capital Expenditure, and Economic Growth (GDP) simultaneously have a significant effect on the Poverty Level in the Bangka Belitung Islands Province in 2017-2021.

Based on the conclusions described above, it is suggested to the Government to be able to increase the sources of Regional Original Revenue (ROR), Capital Expenditures, and Economic Growth (GDP). From the point of view of the regional government’s Capital Expenditures expenditure policy,
The Influence Of Macroeconomic Factors On Human Development Index And Poverty Rate In Bangka Belitung Islands Province Province

it ought to be reexamined in light of the fact that it has not had the option to give huge government assistance to the Destitution Level in view of information examination and speculation testing in this review.

REFERENCES

Ekonomi dan Bisnis Universitas Sam Ratulangi. Manado.

The Influence Of Macroeconomic Factors On Human Development Index And Poverty Rate In Bangka Belitung Islands Province Province

