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Abstract: Modeling the volatility of interest rates is essential for many areas in finance. However, 

it is well known that interest rate series exhibit non-normal characteristics that may not be captured 

with the standard GARCH model with a normal error distribution. But which GARCH model and 

error distribution to use is still open to question, especially where the model that best fits the in-

sample data may not give the most effective out-of-sample volatility forecasting ability, which we 

use as the criterion for the selection of the most effective model from among the alternatives. In 

this work, the GARCH family models were employed in modeling interest rate volatility in Nigeria. 

A time series of data spanning January 2000 to December 2018 (in-sample data) was used to fit 

the models and out-of-sample data running from January to December 2019 to determine the best 

conditional volatility forecast. Twenty-four symmetric and eighteen asymmetric models were 

estimated and compared using three distribution errors; the normal, student's t, and the 

generalized error distributions; while four error loss functions, namely, RMSE, MAE, MAPE, and TIC, 

were adopted to determine the best fit and conditional volatility forecast. The result shows that the 

symmetric GED-GARCH (1,1) model was considered the overall best fit in both the symmetric and 

asymmetric models. The best-fitted GED-GARCH (1,1) model exhibited volatility persistence. The 

in-sample and out-of-sample volatility forecast of the GED-GARCH (1,1) model reveals that 

unconditional mean and variance will be achieved in the third month of 2019. Some transmission 

spillover effects running from the exchange and inflation rates to interest rates were also detected. 
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INTRODUCTION 

 

The fluctuation of a variable over a 

period of time is an indication of the 

volatility of that variable, and the deviation 

from an expected value is often used to 

describe volatility. Financial volatility is 

defined as the measure of the variation in 

the price of a financial instrument over 

time (Ezzati, 2013). One of the basic roles 

of the Central Bank of Nigeria in controlling 

financial institutions is the setting of 

interest rates. The economic well-being of 

any nation is, to a large extent, determined 

by the interest rate fixed by its apex bank. 

We know that the interest rate and the 

aggregate supply of money in circulation 

are the two main instruments of monetary 

policy, which can either be achieved by 

controlling the growth of money supply or 

expanding the supply of money in 

circulation, which in turn leads to excess 

demand, thereby causing the interest rate  

to decline. Although the 1980 

economic reforms saw some significant 

levels of development, particularly in the 

financial system, there are still many 

unresolved economic problems, 

particularly interest rates, which have had 

devastating effects on the cost of 

borrowing and investment in Nigeria and 

which have been the bane of dissatisfied 

foreign investment. The interest rate policy 

in Nigeria, for example, has changed within 

the time frame of regulated and 

deregulated regimes. According to (Okwori 

et al., 2014), Nigeria has pursued a two-

interest rate regime starting from the 

1960s to the mid-1980s with the 

administration of low interest rates, which 

was intended to encourage investment. 

However, the advent of the Structural 

Adjustment Programme (SAP) in the third 

quarter of 1986 ushered in an era when 

fixed and low-interest rates were gradually 

replaced by a dynamic interest rate regime, 

where rates were more influenced by 

market forces. (Chirwa E.W. and M. 

Mlachila, 2004) argued that the major 

economic indicator used to boost 

investment is interest rates, which have 

been found to be higher in Africa, Latin 

America, and the Caribbean countries than 

in the Organization of European Countries. 

The behavior of interest rates, to a large 

extent, determines the investment 

activities and hence economic growth of a 

country. According to (Jhingan, 2003), if 

interest rates are high, investment is at a 

low level; when interest rates fall, the 

investment will rise. The high-interest rate 

in Nigeria might be owing to high inflation 

that remained at double digits and other 

macroeconomic factors like the instability 

in the Nigeria currency, even the increased 

sub-national government spending and 

government high expenditure. On the 

basis of the foregoing, it becomes 

necessary to investigate the dynamic 

nature of interest rates in Nigeria and 

whether or not there are external forces 

influencing such volatility, so that investors 

and government agencies can, on the basis 

of the outcome of this research, be 

properly informed in making appropriate 

investment and policy decisions.  

The economic status of any nation is, 

to a large extent, determined by the level 
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of investment made by the private sector, 

foreign investments, and the national 

government. Following the assertion that 

interest rates (bank lending rates) are 

highly volatile in Nigeria, both local and 

foreign investors have become skeptical 

about whether to borrow and invest or not 

and when. It was also argued that there 

may be other independent variables whose 

variances may be contributing to the 

conditional volatility of interest rates in 

Nigeria over the years. It, therefore, 

becomes imperative to study this 

dynamism or volatility of interest rates in 

Nigeria so that these investors can rightly 

be advised on what the future holds. To 

accomplish this, it is necessary to look for 

a statistical package or GARCH-family 

model that will provide the best fit for the 

best forecast for such advice.  

 

Statement of the Problem   

The economic status of any nation is, 

to a large extent, determined by the level 

of investment made by the private sector, 

foreign investments, and investment by the 

national or federal government. Following 

the assertion that interest rates (bank 

lending rates) are highly volatile in Nigeria, 

both local and foreign investors have 

become skeptical about whether to borrow 

and invest or not and when. To advise these 

investors, a statistical package or GARCH-

family model that provides the best fit for 

such advice is required. If interest rates are 

indeed volatile, are we certain that the 

variances of other related economic 

variables are not equally affecting the 

conditional variance of interest rates in 

Nigeria, i.e. the spillover effect? It is 

therefore critical to investigate the 

dynamism or volatility of interest rates in 

Nigeria so that these investors can be 

properly advised on what the future holds. 

However, while modeling the volatility of 

interest rates is essential for many areas in 

finance, it is well known that interest rate 

series (like many other variables) exhibit 

non-normal characteristics that may not be 

captured with the standard GARCH model 

with a normal error distribution. But which 

GARCH model and error distribution to use 

is still open to question, especially where 

the model that best fits the in-sample data 

may not give the most effective out-of-

sample volatility forecasting ability, which 

we use as the criterion for the selection of 

the most effective model from among the 

alternatives.  

1. Theoretical Review of Related 

Literature  

The first breakthrough in volatility 

modeling was (Engle, 1982), where it was 

shown that conditional heteroscedasticity 

can be modeled using the Autoregressive 

Conditional Heteroscedasticity (ARCH) 

model. The ARCH model relates the 

conditional variance of the disturbance 

term to the linear combination of the 

squared disturbance in the recent past 

Determining optimal lag length is 

cumbersome, often times engendering 

parameterization. However, (Bollerslev, 

1986) and Taylor (1986) independently 

proposed the extension of the ARCH 

model with an Autoregressive Moving 

Average (ARMA) formulation, with a view 

to achieving parsimony. The model is 

called the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) 

model, which models conditional variance 

as a function of its lagged values as well as 
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squared lagged values of the disturbance 

term. Although the GARCH model has 

proven useful in capturing symmetric 

effects of volatility, it is bedeviled with 

some limitations, such as the violation of 

non-negativity constraints imposed on the 

parameters to be estimated.                      

To overcome these constraints, some 

extensions of the original GARCH model 

were proposed. This includes asymmetric 

GARCH family models such as Threshold 

GARCH (TGARCH) proposed by (Zakoian, 

1994).                                                                                             

Exponential GARCH (EGARCH) was 

proposed by Nelson (1991) and Power 

GARCH (PGARCH) was proposed by Ding 

et al (1993). The idea of the proponents of 

these models is based on the 

understanding that good news (positive 

shocks) and bad news (negative shocks) of 

the same magnitude have different effects 

on conditional variance. The EGARCH 

model which captures asymmetric 

properties between interest rate and 

conditional volatility was proposed to 

address major deficiencies of GARCH 

model. They are (i) Parameter restrictions 

that ensure conditional variance positivity; 

(ii) non-sensitivity to asymmetric response 

to shocks and (iii) difficulty in measuring 

persistence in a strongly stationary series. 

The log of the conditional variance in the 

EGARCH model signifies that the leverage 

effect is exponential and not quadratic.                                                                                                                                  

2. Empirical Review of Related Literature   

Several empirical works have been 

done since the seminar paper of (Engle, 

1982) on volatility modeling, especially in 

finance, even though a number of 

theoretical issues still remain unresolved 

(Franses & McAleer, 2002).                                                                                  

(Olweng, 2011) studied the best fit of 

short-term interest rate volatility in Kenya. 

The ARCH(q) and GARCH (p,q) models 

were considered and the result revealed 

that the GARCH (p,q) model is better for 

explaining the conditional volatility of 

short-term interest rates in Kenya. The 

result further indicated the presence of 

volatility clustering that exists as a link 

between the level of short-term interest 

rate and volatility of interest rate in that 

country. He recommended that the study 

be extended to asymmetric GARCH 

models.                                                                       

(Bayracı & Ünal, 2014) in their work to 

determine the best fit applied the discrete-

time  

GARCH (1,1) and continuous-time 

COGARCH (1,1) models to analyze the 

interest rate dynamics in Turkish market. 

The result shows that the COGARCH (1,1) 

model provided the best and excellent 

result in modeling interest rate series, as 

they capture the characteristics of the 

volatility process and yielded a better 

conditional volatility estimate than the 

discrete-time counterpart GARCH (1,1) 

model.                                                                                                       

(Okoro et al., 2017) applied two 

asymmetric models, EGARCH (1,1) and 

GJR-GARCH(1,1) models in the forecasting 

of USDNGN Exchange rate in Nigeria, 

under error distributions such as the 

normal, skewed normal, student’s t-

distribution, skewed student’s t-

distribution, Generalized error distribution 

and skewed Generalized error distribution. 

The result obtained indicates that all the 

models performed fairly well in capturing 

the volatility fluctuation of Nigeria 

Exchange rate returns with slight 

advantage of GED-EGARCH (1,1) and GJR-
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GARCH (1,1) for the in-sample fit. The two 

models have the lowest AIC and the 

highest log likelihood values. For out-of-

sample forecasting, the EGARCH (1,1) 

analyzed with Generalize Error Distribution 

have the minimum MSE and MAE 

respectively. The empirical results of the 

study however revealed evidence of 

leverage effects in USDNGN Exchange rate 

return within the period under study. 

(Omari-Sasu et al., 2015), studied the 

volatility of stock market in Ghana and 

employed the GARCH family model to 

determine the best model that will best 

explain the stock market in that country. 

The result shows that the GARCH (1,1) 

model was the best fit among others in the 

analysis of three equities examined. The 

work further revealed that though there is 

a presence of volatility, but not persistence 

in the three stock markets examined.                                                                      

(Kosapattarapim et al., 2012), in evaluating 

the volatility forecasting performance of 

best-fitting GARCH models in emerging 

Asian stock markets concluded that out of 

six different types of error distributions 

employed in the analysis, the GARCH (p,q) 

model with non-normal error distribution 

tend to provide out-of-sample forecast 

performance than a GARCH (p,q) model 

analyzes with normal error distribution.                                                                                       

(Tobia, 2011) inferred that there is a 

relationship between interest rate and 

interest rate volatility in Kenya. The work 

further noted that GARCH (1,1) model is 

ideal for modeling interest rate volatility in 

Kenya compared to other GARCH family 

models studied.                                                   

(Ahmed & Suliman, 2011), examined 

modelling stock market volatility using 

GARCH models evidence from Sudan. The 

symmetric and asymmetric behavior of the 

stock was analyzed and the result revealed 

that the conditional variance process was 

highly persistent and as such provided 

evidence of risk premium for the KSE index 

stock series which showed that the 

asymmetric model provided a better fit 

than the symmetric model, which 

confirmed the presence of leverage effect.                                                                                                                                  

(Maqsood et al., 2017) in their work 

employed the GARCH model to analyze 

the stock market volatility of Nairobi 

Securities Exchange (NSE). According to 

the report, the GARCH process captured 

the symmetric and asymmetric properties 

of the models and in agreement with the 

work done by inferred that the volatility 

process is highly persistent, showing 

evidence of risk premium for the NSE index 

return series. The report further revealed 

that the symmetric model provided a 

better fit than the asymmetric model.                      

(Ahmed & Suliman, 2011), in their 

work applied the GARCH models to 

forecast the stock market volatility. 

Contrary to the works of (Maqsood et al., 

2017) and, inferred that on the basis of out-

of-sample forecasts and a majority of 

evaluation measures, the asymmetric 

GARCH model performed better in 

forecasting conditional variance of the 

BSE-SENSEX returns than the symmetric 

GARCH model, confirming the presence of 

leverage effect. Dedi and Yavas, (2016) 

used the Augmented GARCH model to 

detect the spillover effect between 

markets. Similarly, (Edwards, 1998) and 

Zouch, Abbes, and Boujelbene (2011) used 

the Augmented GARCH model and 

detected the presence of capital 

transmission/spillover effect Mexico to 
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Chile for the Mexico bonds during 1994 

crisis. 

 

MATERIALS AND METHODS 

 

In financial time series, modelling real 

data needs proper attention, and suitable 

model selection is also required to better 

understand the structure of the statistical 

data which ultimately helps in better 

forecasting. This is because these selected 

models are later used for policy-making 

whether in finance or economics. The 

reason for this care is the non-linear 

dynamics present in such data. For 

financial data, it is sometimes obvious to 

find volatility clusters in a given set of data. 

According to (Mandelbrot, 1963) volatility 

clustering refers to the observation where 

large changes tend to be followed by large 

changes of either sign, and small changes 

tend to be followed by small changes. In 

other words, volatility depends more on 

recent past values than distant past values.  

1. Model Specification.  

Financial markets react nervously to 

political disorder, economic crises, wars or 

natural disasters. Similarly, following the 

rate of inflation, volume of money supply, 

exchange rate and other regulatory 

instruments employed by Central Bank of 

Nigeria (CBN) to ensure sustained 

economic growth, the interest rate no 

doubt fluctuates at low and high rates at 

interval of times.  To model time series 

volatility, the symmetric ARCH-GARCH 

family models shall be employed in the 

analysis of this work.  

2. Autoregressive Conditional 

Heteroscedasticity (ARCH) Model  

The ARCH method provides a way to 

model a change in variance in a time series 

that is time dependent, such as increasing 

or decreasing volatility. Autoregressive 

therefore describes a feedback mechanism 

that incorporates past observations into 

the present, that is, the series depends on 

its past values. In other words, it implies 

that (unequal variance) observed in the 

series over different time periods may be 

auto-correlated. Conditional implies that 

variance is based or depends on past errors 

(shocks). ARCH therefore simply conveys 

that series in question which has a time-

varying variance that depends on the 

lagged effects (autocorrelation). The ARCH 

model originally proposed by (Engle, 1982) 

is given by;     

                         𝜎2
𝑡 = 𝜀𝑡𝜎𝑡                                        

(3.1)  where 𝜀𝑡~ 𝑁(0, 1),         𝑡 = 1, 2, … 𝑛  

and equation (3.1) is called the mean 

equation while the ARCH variance 

equation is given by;      

                    

(3.2)  

𝑤ℎ𝑒𝑟𝑒 𝜎𝑡│𝛹𝑡 ~ 𝑁(0, 𝜎) and 𝜎𝑡 is the 

dependent variable, 𝛼0 is the constant 

term, 𝜀𝑡 is the disturbance term, 𝛹𝑡 is the 

information set available at time t, q is the 

lag length of ARCH model and 𝜶’s vectors 

of unknown parameters in the variance 

equation.  

3. Test for ARCH-GARCH Effect.    

Though it is assumed that financial and 

economic variables change rapidly from 

time to time in an apparently unpredictable 

manner, it therefore becomes necessary to 

determine periods when large changes are 

followed by further large changes and 

periods when small changes are followed 
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by further small changes, popularly known 

as volatility clustering.                               

An estimation test to determine whether a 

particular variable or series is volatile (has 

ARCH effect) or not becomes necessary. To 

achieve this, a methodology to test for lag 

length of ARCH errors using the Lagrange 

Multiplier (LM) test was proposed by 

(Engle, 1982).  

The Lagrange Multiplier (LM) test statistic 

is defined as;  

                                               LM = T|R2 ~ 

𝜒2
(q)                                             (3.3)  

Where T| is the number of equations in the 

model which fits the residual versus the 

lags, that is, T| = T-q, where q is the lag 

length of the ARCH model. The null 

hypothesis is rejected in favour of the 

alternative if the p-value is less than one or 

five percent level of significance.   

4. Generalized Autoregressive 

Conditional Heteroscedasticity 

(GARCH) Model   

The generalized autoregressive conditional 

heteroscedasticity (GARCH) model, is an 

extension of the ARCH model that 

incorporates a moving average 

component together with the 

autoregressive component. The 

introduction of the moving average 

component is to allow the model to both 

model the conditional change in the 

variance over time as well as changes in the 

time-dependent variance.                                                                                                       

(Bollerslev, 1986) extended Engle’s original 

work by developing a technique that 

allows conditional variance to be an ARIMA 

process. If we allow the error process to be 

such that;  

                                         𝜎𝑡
2 = 𝜀𝑡𝜎𝑡                                                 

(3.4)                          

where 𝜀𝑡~ 𝑁(0,1),   𝑡 = 1, 2, … 𝑛 and  

                                  

     

           (3.5)                          

is defined as the generalized ARCH (p, q) 

model. 𝜎𝑡
2 is the conditional variance, 𝛼0 is 

the constant term, 𝛼𝑖 are the coefficients of 

the squared error of the ARCH component 

while 𝛽𝑖 are the coefficients of the 

conditional variance of the GARCH term. 

𝜀𝑡
2
−1 measures the shock on volatility. The 

conditional term compared with the 

ARCH(q) model is the forecasted variance 

from the previous period given by .In 

other words, the GARCH model is a model 

that attempts to explain the conditional 

volatility using the past lagged squared 

errors  and the past conditional 

variance . However, a typical GARCH 

(1,1) model Equation is given by;  

                                                 

(3.6)  

5. Non-negativity Constraints and 

Stationarity in GARCH (1,1) Model  

Brooks (2008) inferred that the values of a 

conditional variance must always be strictly 

positive; a negative variance at any point in 

time would be meaningless. The variable 

on the RHS of the conditional variance 

equation are all squares of lagged errors, 

and so by definition will not be negative. In 

order to ensure that these always result in 

positive conditional variance, all of the 

coefficients in the conditional variance are 

required to be non-negative. This non-

negativity therefore implies that 𝛼0 > 0, 𝛼1 

≥ 0, 𝛽1 ≥ 0. Going by the above, the 

stationarity condition of a standard GARCH 

model states that 𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0, and, 

𝛼1 + 𝛽1 < 1. The achievement of these 
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conditions implies the model is well-

defined. The unconditional variance under 

GARCH model specification indicated that 

the conditional variance of 𝜀𝑖 is constant 

and given by;  

                                                     

(3.7)  

6. Asymmetry Volatility Models    

However, neither the ARCH (q) nor the 

GARCH (p, q) is able to incorporate the 

asymmetry volatility. To adjust for this 

condition, several models have been 

developed using the GARCH model as their 

foundation. Other GARCH family models 

employed to determine the Asymmetric 

properties of the model and best fit are as 

follows:  

 

 

(A)   Exponential Generalized 

Autoregressive Conditional   

Heteroscedasticity (EGARCH)  

The EGARCH model was the first model to 

incorporate asymmetry volatility. Empirical 

studies have shown that the EGARCH 

provides a more accurate result compared 

to the conventional symmetric ARCH and 

GARCH models, (Alberg. shalit, Yosef, 

2008).   

(Adeleye, 2019), inferred that news, 

incidents, merger of companies, 

acquisition of companies, wars, terrorist 

attacks, launch of new discoveries, 

secession or independence etc, have 

strong and powerful influence on the 

decision making of financial investors, 

hence, have asymmetric impact on 

financial investors across the globe.   

Hence, the impact of good and bad news 

on financial market is asymmetric (not the 

same). In asymmetric models, positive 

shocks do not have exactly the same 

magnitude with negative shock and vice 

versa.   

The EGARCH variance equation with 

normal distribution is hereby stated 

(Brooks, 2014).  

  

     (3.8)  

Where 𝜔 is the intercept for the vaeiance, 

𝛽 is the coefficient for the logged GARCH 

term,  is logged GARCH term, 𝛾 is 

the scale of the asymmetric volatility, is the 

last period shock which is standardized, 

and  parameter that takes into account the 

absolute value of the last period’s volatility 

shock. It replaces the regular ARCH term. 

The model captures the asymmetry 

volatility through the variable gamma (𝛾). 

The sign of the gamma determines the size 

of the asymmetric volatility, and if the 

asymmetric volatility is positive or negative 

(Brooks, 2014).   

If 𝛾 = 0, implies is symmetric or no 

asymmetric volatility. If 𝛾 < 0, implies 

negative shock will increase the volatility 

more than positive shocks. If 𝛾 > 0, implies 

that positive shock increases the volatility 

more than negative shocks. According to 

previous studies in the subject, the 

coefficient 𝛾 is often negative, this implies 

that negative shocks have more impact on 

volatility than positive shocks (good news). 

Given that the model uses the log of the 

variance (𝜎2), this means that even if the 

parameters are negative, the variance will 

still be positive. Therefore, the model is not 

subject to the non-negative constraints. (B)    

Threshold GARCH Model (TGARCH)  

The GJR-GARCH also called Treshold 
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GARCH (TGARCH) model was developed 

by Glosten, Jagannathan & Runkle (1993). 

The advantage of the model is that the 

variance is directly modelled and does not 

use the natural logarithm like the EGARCH 

model. The main target of the TGARCH 

model is to capture asymmetries in terms 

of negative and positive shocks. To do that 

is simply to add into the variance equation 

of the GARCH model a multiplicative 

dummy variable 𝛾𝜀𝑡−𝑖𝐼𝑡−𝑖 to check whether 

there is statistically significant difference 

when the shocks are negative. Hence the 

conditional variance for a TGARCH or GJR-

GARCH is given by:                                                                           

     

 (3.9)  

However, the form of GJR-GARCH (1, 1) is 

given by:  

                            

                      

(3.10)  

In equation (3.9) above,  is the 

conditional forecasted variance,   is 

the intercept for the variance, while 

  is the variance that depends on previous 

lag error term.  is the coefficient of 

previous period forecasted variance and 

 is the previous period forecasted 

variance. Moreso,  is the scale (coefficient) 

of the asymmetric volatility.  is a 

dummy variable that is only activated if the 

previous shock is negative ( < 0), 

allowing the GJR-GARCH to take the 

leverage effect into consideration. Glosten 

et al (1993).  

                              

  

From equation (3.10), good news, (positive 

shock) and bad news, that is, negative 

shock   

( < 0) have different impacts on the 

conditional variance. A positive shock is 

captured by the coefficient , ie have an 

-effect on the conditional variance , 

while negative shock (Bad news) has an 

 effect on the conditional variance 

, (volatility). If  = 0, the GJR- 

GARCH model becomes a linear symmetric 

GARCH model but if 

 

 

 

If  < 0, positive shock will increase 

volatility more than  

negative shocks.   

(C)    The Power GARCH (PGARCH) Model  

Ding et al (1993), expressed conditional 

variance using PGARCH (p,d,q) as;  

              

     

           (3.11)  

Here, d > 0 and  establishes the 

existence of leverage effects. If d is set at 2, 

the PGARCH (p , q) replicates a GARCH(p , 

q) with a leverage effect. If d is set at 1, the 

standard deviation is modelled. The first 

order of the above PGARCH equation is 

PGARCH (1, d, 1) expressed as:  

                   

                    

(3.12)  

The failure to accept the null hypothesis 

that  shows the presence of leverage 

effect. The impact of news on volatility in 

PGARCH is similar to that of TGARCH when 

d is 1  

6. Volatility Transmission (Spillover Effect)  

The transmission of shocks from one 
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market or variable to another was well 

documented by (Ewing, 2002). Co-

movement across volatilities (co-volatility) 

due to common information that 

simultaneously affect expectations and 

information spillover caused by cross-

market hedging are some of the reasons 

for volatility transmissions. In addition to 

endogenous events or variables, 

exogenous variables, deterministic events 

(macroeconomic announcements) may all 

have influence on the volatility process. To 

determine volatility transmission 

(Spillover) between variables (markets), we 

use the Augmented GARCH model as 

developed by (Duan, 1997). The model is 

defined as follows:  

                          

                              

(3.13)  

Where 𝑋𝑡 is the residual squared error of 

ARMA model and 𝜃 the term that measures 

the magnitude of volatility spillover 

(transmission) across the variables 

(markets). Two variables, namely, exchange 

and inflation rates were introduced to 

determine whether they have any spillover 

effect on the conditional volatility of 

interest rate in Nigeria within the period 

under review.  

7. Model Selection Criteria  

Finding optimal of a model that will fit a 

particular data set has always been 

favourite for researchers. Reinhard and 

Lunde (2001), inferred that there is not a 

unique criterion for selecting the best 

model, rather it depends on preferences, 

example, expressed in terms of a utility 

function or loss function. The standard 

model selection criteria of (Akaike et al., 

1973) and Schwartz are often applied. 

Bieren, H, J (2006) recommended the 

following modification, if the model 

includes ARCH type errors.  

                           𝐴𝐼𝐶 = −2 log(𝜎̂2) + 2𝑘 − 1 

− log(2𝜋)                             (3.14)  

Shibata (1976) showed through empirical 

evidence that AIC has the tendency to 

choose models which are over 

parameterized. Various modifications have 

been produced to overcome this lack of 

consistency. (Schwarz, 1978) developed a 

consistent criterion for models defined in 

terms of their posterior probability 

(Bayesian approach) which is given by;  

                            𝑆𝐼𝐶 = −2𝑙𝑜𝑔(𝜎̂2) + 

𝑘𝑙𝑜𝑔(𝑛)                                        (3.15)  

Where  is the estimated model error 

variance, k is the number of free 

parameters in the model, n is the number 

of observations. In ARCH context, this form 

will look like;    

                             

     

         (3.16)  

8. Loss Functions-Measure of Forecast 

Performance  

Although in literature, several methods of 

measuring the performance conditional 

variance,           

(Liu, 2009) inferred that the Root Mean 

Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percent Error 

(MAPE) and Theil Inequality Coefficient 

(TIC) are most appropriate in determining 

the best forecast performance. (Clements, 

2005), on the predictive ability of volatility 

models proposes that out-of-sample 

forecasting ability remains the criterion for 

selecting the best predictive model, hence 
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shall be adopted in this study. If 𝜎𝑡
2 and  

represents the actual and forecasted 

volatility of interest rate at time t, then;  

                                                                      

(3.17)  

  

                                                                       

(3.18)  

  

                                                                                 

(3.19)  

                                                                    

(3.20)    

The volatility model with the least RMSE, 

MAE, MAPE and TIC statistic is the best 

forecasting model.  

9. Distribution of Errors 𝜺t   

As far as error distribution is concerned, 

GARCH model theory suggests three 

assumptions about the distribution of 

residuals. These three assumptions may 

follow normal law, a student law or a 

generalized Error distribution (GED). In this 

work three different distributions namely; 

the normal (Gaussian), the student’s t-

Distribution and the Generalize Error 

distribution were employed to determine 

the best fit and forecast of the conditional 

variance. The Normal distribution:  

𝑍2

 

                                   (3.21)  

Student t-distribution:  

+1) 

 −∞ < 𝑍 < ∞           (3.22)  

 Generalized Error Distribution:  

 

                        

                                     

(3.23)  

 V > 0 is the degree of freedom or the tail-

tickness.   

10. Mean Reversion  

(John et al., 2019), stated that mean 

reversion means that current information 

has no influence on the long run forecast 

of the volatility. Persistence dynamics in 

volatility is generally captured in the 

GARCH coefficients of a stationary GARCH-

type model. In stationary GARCH-type 

models, the volatility mean reverts to its 

long-run level, at a rate given by sum of 

ARCH and GARCH coefficients, which is 

usually close to one (1) for financial time 

series. The average number of time periods 

for the volatility to revert to its long run 

level is measured by the half-life of the 

volatility shock. The mean reverting form 

of the GARCH (1,1) model is given by;  

  

              𝜀𝑡
2 − 𝜎 2 = (𝛼 + 𝛽)(𝜀𝑡

2
−1 − 𝜎 2) + 𝑟1 + 

𝛽1 + 𝑟1−1                    (3.24)     

  

       

Where      , is the 

unconditional long-run level of volatility 

and .  The magnitude of the 

mean reverting rate 𝛼 + 𝛽 (speed of 

adjustment) controls the speed of the 

mean reversion. 

 

 

 

𝑅𝑀𝑆𝐸 = √ 
1 

𝑇 
∑ ( 𝜎  𝑡 

2 𝑇 
𝑖 = 1 −   𝜎 𝑡 

2 ) 
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RESULTS AND DISCUSSION 

 

In financial time series, modelling real 

data needs proper attention, and suitable 

model selection is also required to better 

understand the structure of the statistical 

data which ultimately helps in better 

forecasting. This is because these selected 

models are later used for policy making 

whether in finance or economics. The 

reason for this care is the non-linear 

dynamics present in such data. For 

financial data, it is sometimes obvious to 

find volatility clusters in a given set of data. 

According to (Mandelbrot, 1963) volatility 

clustering refers to the observation where 

large changes tend to be followed by large 

changes of either sign, and small changes 

tend to be followed by small changes. In 

other words volatility depends more on 

recent past values than distant past values.  

1. Model Specification.  

Financial markets react nervously to 

political disorder, economic crises, wars, or 

natural disasters. Similarly, following the 

rate of inflation, volume of money supply, 

exchange rate and other regulatory 

instruments employed by the Central Bank 

of Nigeria (CBN) to ensure sustained 

economic growth, the interest rate no 

doubt fluctuates at low and high rates at 

intervals of times.  To model time series 

volatility, the symmetric ARCH-GARCH 

family models shall be employed in the 

analysis of this work.  

2. Autoregressive Conditional 

Heteroscedasticity (ARCH) Model  

The ARCH method provides a way to 

model a change in variance in a time series 

that is time-dependent, such as increasing 

or decreasing volatility. Autoregressive, 

therefore, describes a feedback mechanism 

that incorporates past observations into 

the present, that is, the series depends on 

its past values. In other words, it implies 

that (unequal variance) observed in the 

series over different time periods may be 

auto-correlated. Conditional implies that 

variance is based or depends on the past 

errors (shocks). ARCH therefore simply 

conveys that series in question which has 

time-varying variance that depends on the 

lagged effects (autocorrelation). The ARCH 

model originally proposed by (Engle, 1982) 

is given by;     

                         𝜎2
𝑡 = 𝜀𝑡𝜎𝑡                                        

(3.1)  where 𝜀𝑡~ 𝑁(0, 1),         𝑡 = 1, 2, … 𝑛  

and equation (3.1) is called the mean 

equation while the ARCH variance 

equation is given by;      

                    
(3.2)  

𝑤ℎ𝑒𝑟𝑒 𝜎𝑡│𝛹𝑡 ~ 𝑁(0, 𝜎) and 𝜎𝑡 is the 

dependent variable, 𝛼0 is the constant 

term, 𝜀𝑡 is the disturbance term, 𝛹𝑡 is the 

information set available at time t, q is the 

lag length of ARCH model and 𝜶’s vectors 

of unknown parameters in the variance 

equation.  

3. Test for ARCH-GARCH Effect.    

Though it is assumed that financial 

and economic variables change rapidly 

from time to time in an apparently 

unpredictable manner, it therefore 

becomes necessary to determine periods 

when large changes are followed by 

further large changes and periods when 

small changes are followed by further small 

changes, popularly known as volatility 

clustering.                               
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An estimation test to determine whether a 

particular variable or series is volatile (has 

ARCH effect) or not becomes necessary. To 

achieve this, a methodology to test for lag 

length of ARCH errors using the Lagrange 

Multiplier (LM) test was proposed by 

(Engle, 1982).  

The Lagrange Multiplier (LM) test statistic 

is defined as;  

                                               LM = T|R2 ~ 

𝜒2
(q)                                             (3.3)  

Where T| is the number of equations in the 

model which fits the residual versus the 

lags, that is, T| = T-q, where q is the lag 

length of the ARCH model. The null 

hypothesis is rejected in favour of the 

alternative if the p-value is less than one or 

five percent level of significance.   

4. Generalized Autoregressive 

Conditional Heteroscedasticity 

(GARCH) Model   

Generalized autoregressive 

conditional heteroscedasticity (GARCH) 

model, is an extension of the ARCH model 

that incorporates a moving average 

component together with the 

autoregressive component. The 

introduction of the moving average 

component is to allow the model to both 

model the conditional change in the 

variance over time as well as changes in the 

time dependent variance.                                                                                                       

(Bollerslev, 1986) extended Engle’s original 

work by developing a technique that 

allows the conditional variance to be an 

ARIMA process. If we allow the error 

process to be such that;  

𝜎𝑡
2 = 𝜀𝑡𝜎𝑡                                                 (3.4)                          

where 𝜀𝑡~ 𝑁(0,1),   𝑡 = 1, 2, … 𝑛 and     

                                     

     

           (3.5)                          

is defined as the generalized ARCH (p, q) 

model. 𝜎𝑡
2 is the conditional variance, 𝛼0 is 

the constant term, 𝛼𝑖 are the coefficients of 

the squared error of the ARCH component 

while 𝛽𝑖 are the coefficients of the 

conditional variance of the GARCH term. 

𝜀𝑡
2
−1 measures the shock on volatility. The 

conditional term compared with the 

ARCH(q) model is the forecasted variance 

from the previous period given by .In 

other words, the GARCH model is a model 

that attempts to explain the conditional 

volatility using the past lagged squared 

errors  and the past conditional 

variance . However, a typical GARCH 

(1,1) model Equation is given by;  

                                              

(3.6)  

5. Non-negativity Constraints and 

Stationarity in GARCH (1,1) Model  

Brooks (2008) inferred that the values 

of a conditional variance must always be 

strictly positive; a negative variance at any 

point in time would be meaningless. The 

variable on the RHS of the conditional 

variance equation are all squares of lagged 

errors, and so by definition will not be 

negative. In order to ensure that these 

always result in positive conditional 

variance, all of the coefficients in the 

conditional variance are required to be 

non-negative. This non-negativity 

therefore implies that  𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 

0. Going by the above, the stationarity 

condition of a standard GARCH model 

states that  𝛼0 > 0,   𝛼1 ≥ 0, 𝛽1 ≥ 0 and, 𝛼1 + 

𝛽1 < 1. The achievement of these 

conditions implies the model is well 

defined. The unconditional variance under 
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GARCH model specification indicated that 

the conditional variance of 𝜀𝑖 is constant 

and given by;  

                                                                          

(3.7)  

6. Asymmetry Volatility Models    

However, neither the ARCH (q) nor the 

GARCH (p, q) is able to incorporate the 

asymmetry volatility. To adjust for this 

condition, several models have been 

developed using the GARCH model as their 

foundation. Other GARCH family models 

employed to determine the Asymmetric 

properties of the model and best fit are as 

follows:  

(A) Exponential Generalized 

Autoregressive Conditional   

Heteroscedasticity (EGARCH)  

The EGARCH model was the first 

model to incorporate asymmetry volatility. 

Empirical studies have shown that the 

EGARCH provides a more accurate result 

compared to the conventional symmetric 

ARCH and GARCH models, (Alberg shalit, 

Yosef, 2008).   

(Adeleye, 2019), inferred that news, 

incidents, merger of companies, 

acquisitions of companies, wars, terrorist 

attacks, launch of new discoveries, 

secession or independence etc, have 

strong and powerful influence on the 

decision making of financial investors, 

hence, have asymmetric impact on 

financial investors across the globe.   

Hence, the impact of good and bad 

news on financial market is asymmetric 

(not the same). In asymmetric models, 

positive shocks do not have exactly the 

same magnitude with negative shock and 

vice versa.   

The EGARCH variance equation with 

normal distribution is hereby stated 

(Brooks, 2014).  

 

 

(3.8) 

Where 𝜔 is the intercept for the vaeiance, 

𝛽 is the coefficient for the logged GARCH 

term,  is logged GARCH term, 𝛾 is 

the scale of the asymmetric volatility, is the 

last period shock which is standardized, 

and parameter that takes into account the  

absolute value of the last period’s volatility 

shock. It replaces the regular ARCH term. 

The model captures the asymmetry 

volatility through the variable gamma (𝛾). 

The sign of the gamma determines the size 

of the asymmetric volatility, and if the 

asymmetric volatility is positive or negative 

(Brooks, 2014).   

If 𝛾 = 0, implies is symmetric or no 

asymmetric volatility. If 𝛾 < 0, implies 

negative shock will increase the volatility 

more than positive shocks. If 𝛾 > 0, implies 

that positive shock increases the volatility 

more than negative shocks. According to 

previous studies in the subject, the 

coefficient 𝛾 is often negative, this implies 

that negative shocks have more impact on 

volatility than positive shocks (good news). 

Given that the model uses the log of the 

variance (𝜎2), this means that even if the 

parameters are negative, the variance will 

still be positive. Therefore, the model is not 

subject to non-negative constraints. (B)    

Threshold GARCH Model (TGARCH).  

The GJR-GARCH also called Treshold 

GARCH (TGARCH) model was developed 
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by Glosten,  

Jagannathan & Runkle (1993). The 

advantage of the model is that the variance 

is directly modelled and does not use the 

natural logarithm like the EGARCH model. 

The main target of the TGARCH model is to 

capture asymmetries in terms of negative 

and positive shocks. To do that is simply to 

add into the variance equation of the 

GARCH model a multiplicative dummy 

variable 𝛾𝜀𝑡−𝑖𝐼𝑡−𝑖 to check whether there is 

statistically significant difference when the 

shocks are negative. Hence the conditional 

variance for a TGARCH or GJR-GARCH is 

given by:                                                                           

     

   (3.9)  

However, the form of GJR-GARCH (1, 1) is 

given by:  

                      

(3.10)  

In equation (3.9) above,  is the 

conditional forecasted variance,   is 

the intercept for the variance, while 

  is the variance that depends on previous 

lag error term.  is the coefficient of 

previous period forecasted variance and 

 is the previous period forecasted 

variance. Moreso,  is the scale (coefficient) 

of the asymmetric volatility.  is a 

dummy variable that is only activated if the 

previous shock is negative ( < 0), 

allowing the GJR-GARCH to take the 

leverage effect into consideration. Glosten 

et al (1993).  

  

From equation (3.10), good news, (positive 

shock) and bad news, that is, negative 

shock. 

( < 0) have different impacts on the 

conditional variance. A positive shock is 

captured by the coefficient , ie have an 

-effect on the conditional variance , 

while negative shock (Bad news) has an 

  effect on the conditional 

variance , (volatility). If  = 0, the GJR- 

GARCH model becomes a linear symmetric 

GARCH model but if 

 

 

 

If  < 0, positive shock will increase 

volatility more than  

negative shocks.   

(C)    The Power GARCH (PGARCH) Model  

Ding et al (1993), expressed conditional 

variance using PGARCH (p,d,q) as;  

     

           (3.11)  

Here, d > 0 and  establishes the 

existence of leverage effects. If d is set at 2, 

the PGARCH (p, q) replicates a GARCH(p , 

q) with a leverage effect. If d is set at 1, the 

standard deviation is modelled. The first 

order of the above PGARCH equation is 

PGARCH (1, d, 1) expressed as:  

                   

                    

(3.12)  

The failure to accept the null hypothesis 

that  shows the presence of leverage 

effect. The impact of news on volatility in 

PGARCH is similar to that of TGARCH when 

d is 1. 

7. Volatility Transmission (Spillover Effect)  

The transmission of shocks from one 

market or variable to another was well 

documented by (Ewing, 2002). Co-

movement across volatilities (co-volatility) 
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due to common information that 

simultaneously affect expectations and 

information spillover caused by cross-

market hedging are some of the reasons 

for volatility transmissions. In addition to 

endogenous events or variables, 

exogenous variables, deterministic events 

(macroeconomic announcements) may all 

have influence on the volatility process. To 

determine volatility transmission 

(Spillover) between variables (markets), we 

use the Augmented GARCH model as 

developed by (Duan, 1997). The model is 

defined as follows:  

                                           

(3.13)  

Where 𝑋𝑡 is the residual squared error of 

ARMA model and 𝜃 the term that measures 

the magnitude of volatility spillover 

(transmission) across the variables 

(markets). Two variables, namely, exchange 

and inflation rates were introduced to 

determine whether they have any spillover 

effect on the conditional volatility of 

interest rate in Nigeria within the period 

under review.  

8. Model Selection Criteria  

Finding optimal of a model that will fit a 

particular data set has always been 

favourite for researchers. Reinhard and 

Lunde (2001), inferred that there is not a 

unique criterion for selecting the best 

model, rather it depends on preferences, 

example, expressed in terms of a utility 

function or loss function. The standard 

model selection criteria of (Akaike, 1974) 

are often applied. Bieren, H, J (2006) 

recommended the following modification, 

if the model includes ARCH type errors.  

                           𝐴𝐼𝐶 = −2 log(𝜎̂2) + 2𝑘 − 1 

− log(2𝜋)                             (3.14)  

Shibata (1976) showed through empirical 

evidence that AIC has the tendency to 

choose models which are over 

parameterized. Various modifications have 

been produced to overcome this lack of 

consistency. (Schwarz, 1978) developed a 

consistent criterion for models defined in 

terms of their posterior probability 

(Bayesian approach) which is given by;  

                            𝑆𝐼𝐶 = −2𝑙𝑜𝑔(𝜎̂2) + 

𝑘𝑙𝑜𝑔(𝑛)                                        (3.15)  

Where  is the estimated model error 

variance, k is the number of free 

parameters in the model, n is the number 

of observations. In ARCH context, this form 

will look like;    

                             

     

         (3.16)  

9. Loss Functions-Measure of Forecast 

Performance  

Although in literature, several methods of 

measuring the performance conditional 

variance,           

(Liu, 2009) inferred that the Root Mean 

Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percent Error 

(MAPE) and Theil Inequality Coefficient 

(TIC) are most appropriate in determining 

the best forecast performance. (Clements, 

2005), on the predictive ability of volatility 

models proposes that out-of-sample 

forecasting ability remains the criterion for 

selecting the best predictive model, hence 

shall be adopted in this study. If 𝜎𝑡
2 and  

represents the actual and forecasted 

volatility of interest rate at time t, then;  

                                                                      

(3.17)  

  

𝑅𝑀𝑆𝐸 = √ 
1 

𝑇 
∑ ( 𝜎  𝑡 

2 𝑇 
𝑖 = 1 −   𝜎 𝑡 

2 ) 
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(3.18)  

  

                                                                                 

(3.19)  

                                                                    

(3.20)    

The volatility model with the least RMSE, 

MAE, MAPE and TIC statistic is the best 

forecasting model.  

10. Distribution of Errors 𝜺t   

As far as error distribution is concerned, 

GARCH model theory suggests three 

assumptions about the distribution of 

residuals. These three assumptions may 

follow normal law, a student law or a 

generalized Error distribution (GED). In this 

work three different distributions namely; 

the normal (Gaussian), the student’s t-

Distribution and the Generalize Error 

distribution were employed to determine 

the best fit and forecast of the conditional 

variance. The Normal distribution:  

𝑍2 

                

     

              (3.21)  

Student t-distribution:  

+1) 

                       −∞ < 𝑍 < ∞           (3.22)  

 

Generalized Error Distribution:  

 

                        

                                     

(3.23)  

 V > 0 is the degree of freedom or the tail-

tickness.   

11. Mean Reversion  

(John et al., 2019), stated that mean 

reversion means that current information 

has no influence on the long run forecast 

of the volatility. Persistence dynamics in 

volatility is generally captured in the 

GARCH coefficients of a stationary GARCH-

type model. In stationary GARCH-type 

models, the volatility mean reverts to its 

long-run level, at a rate given by sum of 

ARCH and GARCH coefficients, which is 

usually close to one (1) for financial time 

series. The average number of time periods 

for the volatility to revert to its long run 

level is measured by the half-life of the 

volatility shock. The mean reverting form 

of the GARCH(1,1) model is given by;  

  

              𝜀𝑡
2 − 𝜎 2 = (𝛼 + 𝛽)(𝜀𝑡

2
−1 − 𝜎 2) + 𝑟1 + 

𝛽1 + 𝑟1−1                    (3.24)     

  

       

Where      , is the unconditional 

long-run level of volatility and 

.  The magnitude of the 

mean reverting rate 𝛼 + 𝛽 (speed of 

adjustment) controls the speed of the 

mean reversion. 

 

CONCLUSIONS 

 

The target variable (interest rate) is the 

bank's lending rate. A total of forty-two 

models were estimated, with twenty-four 

symmetric and eighteen asymmetric 

models. The GED-GARCH (1,1) model 

emerged as the best fit, predicting that 
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unconditional variance (homoscedasticity) 

would be achieved in the third month of 

the following year (March 2019). However, 

two independent variables, exchange and 

inflation rates, that were incorporated as 

external factors, were discovered to have 

an influence on the conditional variance of 

interest rates in Nigeria within the period 

under review. The interest rate in Nigeria is 

indeed volatile and the rate of decay of the 

shocks is very slow. The volatility is 

persistent and, as such, the best GARCH 

family model to adopt in analyzing the 

volatility of interest rates in Nigeria 

remains the symmetric GARCH (1,1) while 

the best error distribution is the 

generalized error distribution (GED). 
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