

The Effect of Soft Drink Consumption on PH in Stimulated and Unstimulated Saliva : *Quasi Experimental with Post-Test Only Comparison Group*

Fitri Dona Siregar^{1*}, Vandersun Lestari², Stevi Nencia Purba³

Universitas Prima Indonesia, Indonesia

Email: fitridonasiregar@unprimdn.ac.id, vandersunlestari@unprimdn.ac.id,
stevinenciapurba@gmail.com

Abstrak. Consuming soda will lower the pH of saliva due to its acid content. This decrease in pH can affect the balance of the oral cavity. Stimulated saliva will have a better buffering capacity than unstimulated saliva. The purpose of this study was to determine the effect of soda consumption on the pH of stimulated and unstimulated saliva. This was a quasi-experimental study with a post-test only comparison group. The study population was 166 male and female students of the Dentistry Department at Prima Indonesia University. The sample size was 68 students, divided into two groups: stimulated and unstimulated saliva. The pH was measured using a digital pH meter. Data were analyzed using the Mann-Whitney test. The results showed that the average pH after soda consumption in the stimulated saliva group was 8.03 ± 0.129 and in the unstimulated saliva group was 5.32 ± 0.304 . The sample group that did not consume carbonated drinks had a mean saliva pH of 6.62 ± 0.455 . The Mann-Whitney test revealed a significant difference in pH between stimulated and unstimulated saliva after carbonated drinks ($p=0.000$; $p<0.05$). The conclusion is that carbonated drinks affect the pH of both stimulated and unstimulated saliva.

Keywords: Saliva pH; Carbonated drinks; Stimulated saliva; Unstimulated saliva; Xylitol

INTRODUCTION

Saliva is a complex, colorless, oral exocrine fluid that contains about 99% water (Sawitri & Maulina, 2021). Saliva has an important role in the health of the oral cavity of individuals both in young and old age. The defense properties of saliva mainly lie in the rate of saliva flow, pH, and buffer capacity (Muddugangadhar *et al.*, 2015). Saliva plays a role in supporting the digestive and swallowing processes, as well as contributing to protecting teeth from the inner and outer influences of the oral cavity. Saliva also has a very important role in maintaining the health of the oral mucosa. Attendance growth factor in saliva supports the wound healing process. The continuous flow of saliva functions to clean food residues, release epithelial cells, and remove foreign bodies. The presence of bicarbonate in saliva helps neutralize acids from food and produced by bacteria in the mouth thus contributing to the prevention of dental caries (Latifa, 2015).

Saliva pH is one of the factors that play a role in determining the acidity level in the mouth (Latifa, 2015). There are several factors that affect the pH of saliva, one of which is the food we consume. The food and drinks we consume can cause saliva to be acidic or alkaline (Sawitri & Maulina, 2021). Soft drinks are a type of drink that contains carbohydrates. Soft drinks have properties that are easily fermented, very acidic and have very high thermodynamic adhesion, so this drink is not easily eliminated by saliva (Astuti *et al* 2018). Soft drinks have a high concentration of glucose, fructose, sucrose and other sugar content (Fitriati *et al.*, 2017). The acid and sugar content in fizzy drinks can affect the pH balance in the oral cavity, especially in saliva. Saliva pH plays an important role in maintaining healthy teeth and mouth, as pH imbalance can increase the risk of enamel demineralization and the development of dental caries (Paramanandana *et al.*, 2020). The acidity degree (pH) of saliva under normal conditions is in the range of 6.8– 7.0 (neutral)

(Sawitri & Maulina, 2021).

Based on several previous studies conducted by Andiyani, in 2020 a link was found between a decrease in saliva pH and the behavior of consuming soft drinks. There is a significant difference in saliva pH before and after consuming soft drinks (Andiriyani, 2020). Research conducted by Maulina, 2020 in Aceh stated the same thing, namely the relationship between saliva pH and the behavior of consuming soft drinks (Maulina et al., 2020). A decrease in saliva pH can cause a disturbance of calcium and phosphate ion balance which can result in the erosion of minerals in the tooth enamel (Heymann, H.O., Swift Jr., E.J., and Ritter, 2013). Hirani's Research et al, 2021 and Pachori et al, 2018 stated that there was a decrease in saliva pH after consuming carbonated drinks. The decrease in the pH of saliva after consuming carbonated drinks is closely related to its acid content. In addition, this decrease in pH is also influenced by other components, including the proportion of carbohydrates contained in the drink (Hirani et al., 2021)(Pachori et al., 2018).

The content contained in fizzy drinks is the cause of a decrease in pH in saliva. Poor saliva pH has a high risk of dental

caries. Teeth will undergo demineralization and remineralization, then if the pH is at a critical value, it causes more tooth minerals to fall out and results in caries (Prasetyo, 2005). When the pH of saliva drops below

5.5 (i.e., the critical pH value), the acid begins to break down the enamel in the teeth and the process of demineralization becomes faster than remineralization (Fitriati et al., 2017). According to Suratri et al the lower the pH of saliva, the greater the risk of teeth getting caries (Suratri et al, 2017). According to data obtained from WHO, there are at least 3.58 billion people in the world who are suspected of having dental and oral diseases, especially in cases with permanent dental caries there are at least 2.4 billion people in the world who experience it (WHO, 2018). In Indonesia itself, according to Riskesdas, there are around 57.6% of people who have problems with dental and oral health, especially caries (Riskesdas, 2018). Many studies in India show that children in the country experience high rates of caries, which is related to low salivary pH. One study conducted by Annapoorna H. B. and Dipayan Datta noted that children with low salivary pH had twice the incidence of caries compared to those with normal pH. This is due to the high consumption of sweet and sour foods, as well as poor oral hygiene (B. & Datta, 2020).

The rate of saliva flow consists of two parts, namely the rate of stimulated and unstimulated saliva flow. The average normal value of stimulated saliva flow rate is 1-2 ml/min and unstimulated 0.29-0.41 ml/min (Rafika et al., 2019). The pH difference between stimulated and unstimulated saliva is worth noting, as stimulated saliva generally has a better buffer capacity compared to unstimulated saliva (Indriana, 2011). The buffer capacity

is closely related to the pH of saliva which is able to neutralize acidic conditions in the oral cavity (Pitu Wulandari & Felicia Lestari, 2014). Therefore, this study was conducted to find out how the consumption of soft drinks can affect the pH of stimulated and unstimulated saliva and its impact on oral health.

The problem formulation in this thesis is based on the following questions:

- 1) Can the consumption of soda drinks affect the pH of saliva when measured with a pH meter

in stimulated saliva at the Faculty of Dentistry, Prima University? 2) Can the consumption of soda drinks affect the pH of saliva when measured with a pH meter in unstimulated saliva at the Faculty of Dentistry, Prima University?

The general objective of this research is to determine the effect of soft drink consumption on the pH of both stimulated and unstimulated saliva. The specific objectives are: 1) To examine the effect of soft drink consumption on the pH of stimulated saliva, and 2) To investigate the effect of soft drink consumption on the pH of unstimulated saliva.

The benefits of this research are as follows: For researchers, this study provides a foundation for more in-depth follow-up research in the fields of saliva, nutrition, and beverage consumption habits, and their impact on oral health. For universities, the study offers an example of applicable research that contributes to the development of science, particularly in the area of dental and oral health. For the community, the research serves as an educational tool that helps raise awareness about the impact of soft drink consumption on oral health.

The research hypothesis is as follows: H_a : There is a difference in the pH of stimulated and unstimulated saliva after

consuming fizzy drinks. H_0 : There is no difference in the pH of stimulated and unstimulated saliva after consuming soft drinks.

MATERIALS AND METHODS

Types and Research Designs

This study is a type of *quasi-experimental* research with *only comparison group testing*.

Research Location and Time

Research location

This research was conducted in the UNPRI dental laboratory with a controlled environment.

Research Time

The research took place from September and October 2025.

Population, Research Subject, Sample

Population

The population taken in this study is 166 students of the Dental Study Program at Universitas Prima Indonesia.

Research Subject

Subjects are selected using the *purposive sampling* i.e. a sampling technique in which subjects are deliberately selected based on certain characteristics that are in accordance with the inclusion and exclusion criteria (Subhaktiyasa, 2024). The following are the inclusion and exclusion criteria for the subjects of this study:

1. Kriteria Inklusi

- FKG UNPRI students who have been screened and signed *informed consent*.
- Aged 18-25 years old
- Cooperative
- Normal pH (ranges from 5.6 to 7.0)

- Have no history of systemic diseases that affect saliva production.

2. Exclusion Criteria

- Taking medications that affect saliva production.
- Have oral health disorders such as xerostomia (normal salivary flow rate: 0.3-0.5 mL/min (unstimulated) and 1.0-3.0 mL/min (stimulated))

Sample

The sample size in this study was determined based on methodological considerations, the availability of subjects who met the predetermined inclusion and exclusion criteria, and the researcher's ability to control confounding variables during the research process. The use of purposive sampling required the selection of participants with specific characteristics relevant to the objectives of the study, ensuring homogeneity of the study subjects and the validity of the results. Based on these considerations, a total of 68 subjects were deemed adequate and representative for this quasi-experimental study and were subsequently divided into a treatment group and a control group.

Research Variables

Variable Dependency

In this study, the dependent variable analyzed was salivary pH, which was measured under two different conditions:

1. Stimulated saliva pH, which is the pH of saliva collected after stimulation in respondents who chewed *xylitol candy*.

The pH of saliva is not stimulated, which is the pH of saliva taken at rest without stimulation. Independent Variables

In this study, the independent variable analyzed was the consumption of soft drinks.

Operational Definition

Available in the attachment

Research Tools and Materials

Research Tools

pH meter, tube to collect saliva, gloves, mask, stopwatch, mouthwash, *informed consent* sheet, pen, pencil and result sheet.

Research Materials

Soft drinks, sweets *Xylitol* without taste and saliva samples.

Analysis Data

Data Analysis

Once the saliva pH data is collected, the next step is to perform a classical assumption test and a statistical test, i.e. (One, 2015):

1. Descriptive Test

The descriptive test was used to determine the characteristics of the research variables in the form of mean values and standard deviations.

2. Normality Test

The normality and homogeneity tests are used as a basis for determining the statistical tests to be used. The normality of data distribution was tested with the *kolmogorov-*

smirnov test and the Levene test. It is declared normal and homogeneous if the p value is > 0.05 .

3. Kruskal–Wallis Test

The Kruskal–Wallis test is used to determine the difference in means or distributions of more than two independent data groups when the data is not normally distributed.

4. Uji Mann-Whitney

This test is to find out the difference in the average of two independent populations or data groups.

Working Procedure

A. Research Preparation

Before the research, calibration was carried out on the pH meter measuring device using pH 7 and 4 buffer solutions to obtain accurate measurement results. Furthermore, carry out research ethics procedures, *screening* according to inclusion and exclusion criteria and ask subjects to fill out an *informed consent* sheet. The researcher instructed the subjects to fast from food and drink for

2 hours before saliva collection. In addition, the researcher gave the subjects an explanation of the method of saliva collection.

B. Saliva Intake

1. Control group

The subjects were not given fizzy drinks and saliva was immediately taken by the sialometry method. The subject sits comfortably and the subject's head is directed forward with a slight bow while the elbows are above the knees. Keep your eyes open and minimize movement, especially movement in the oral cavity. The subjects were asked to spit into the tube for 5 minutes then the sample was stored (Putri *et al.*, 2024).

2. Treatment Groups

Subjects were instructed to consume 250 ml of soft drinks. The process of collecting saliva in the treatment group was carried out by the sialometry method as done in the control group. Saliva collection was carried out under two conditions, namely stimulated saliva was carried out by asking the subject to chew candy *Xylitol* without taste for 2 minutes first, the subject was given a fizzy drink then the saliva was collected into a tube for 5 minutes and in the unstimulated saliva the subject was given a soft drink without chewing candy *Xylitol* then the subjects were asked to spit naturally for 5 minutes into the tube (Astuti *et al.*, 2018).

C. Saliva pH measurement

Saliva pH in the treatment group (stimulated and unstimulated) and control group were measured with a brand digital pH meter *Hanna* which have previously been calibrated on pH 7 and 4 buffer solutions. The pH meter is inserted into a tube containing the saliva sample to the lowest electrode sensor and left for a few seconds until it shows the pH degree. The measurement results are recorded for data analysis (Latifa, 2015).

RESULTS AND DISCUSSION

Average pH After Consumption of Soft Drinks in Stimulated and Unstimulated Saliva

pH measurement after consumption of fizzy drinks in both stimulated and unstimulated saliva groups using a digital pH meter. The full results of the study can be

seen in Table 3.1 below.

Table 3.1 Average pH after consumption of fizzy beverages in Stimulated and Unstimulated Saliva

Groups	Average ± Standard deviation (SD)
Treatment	6.62±0.455
Stimulated Saliva	8.03±0.129
Unstimulated saliva	5.32±0.304

Based on Table 3.1, the results showed that the average pH after consumption of fizzy drinks in the sample group with stimulated saliva was 8.03 ± 0.129 and

Kelompok	Mean ±SD	p value
Saliva Terstimulasi	8,03 ± 0,129	
Saliva Tidak Terstimulasi	5,33 ± 0,300	0,000*
Sakiva Kontrol	6,62 ± 0,455	

unstimulated was 5.32 ± 0.304 . The control group in the sample that did not consume soft drinks with an average saliva pH was 6.62 ± 0.455 .

Normality and Homogeneity Test

Normality test using *Kolmogorov-Smirnov* and homogeneity with *Levene Test* at pH after consumption of a fizzy beverage between stimulated and unstimulated saliva. The full results of the study can be seen in Table 3.2 below.

Table 3.2 Normality and pH Homogeneity Test Results After Consumption of Soft Drinks in Stimulated and Unstimulated Saliva

Groups	Kolmogorov- Smirnov p-value	Levene Test p-value
Stimulated Saliva	0,000	0,000
Unstimulated saliva	0,000	

Based on Table 3.2, the results of the study can be stated that the distributed data is abnormal and inhomogeneous ($p < 0.05$). So, the data analysis used is *Kruskal wallis and Mann-Whitney*.

Difference in pH between Control Group and Treatment Group (Stimulated and Unstimulated Saliva)

The Kruskal-Wallis test was used because the salivary pH data were not normally distributed and/or homogeneous, thus not meeting the requirements for a parametric test. The complete research results can be seen in Table 3.3 below.

Table 3.3 Differences in pH between the Control and Treatment Groups (Stimulated and Unstimulated Saliva)

Groups	Mean \pm SD	p value
Stimulated Saliva	$8,03 \pm 0,129$	
Unstimulated saliva	$5,33 \pm 0,300$	0,000*
Control group	$6,62 \pm 0,455$	

Based on Table 3.3, the Kruskal– Wallis test showed a p value of 0.000 ($p < 0.05$), indicating a significant difference in salivary pH between the stimulated saliva group, the unstimulated saliva group, and the control group. Further analysis was performed using the Mann–Whitney test.

Difference in pH After Consumption of Sparkling Drinks Between Stimulated and Unstimulated Saliva

Test Mann-Whitney The aim was to analyze the difference in pH after consumption of fizzy drinks between stimulated and unstimulated saliva. The full results of the research can be seen in Table 3.3 below.

Table 3.4 pH Difference After Consumption of Sparkling Beverages between Stimulated and Unstimulated Saliva

Treatment Groups	Average \pm Standard deviation (SD)	p-value
Stimulated Saliva	8.03 ± 0.129	0,000*
Unstimulated saliva	5.32 ± 0.304	

*Signifikan

Based on Table 3.4, the results of the study can be stated that there is a significant difference in pH after fizzy drinks between stimulated saliva and unstimulated saliva ($p=0.000$; $p<0.05$). Chewing xylitol gum can increase the pH in samples that consume fizzy drinks.

Discussion

The degree of acidity (pH) of saliva is one of the important factors that play a role in dental caries, periodontal disorders, and other diseases in the oral cavity (Zahara et al., 2023). The normal level of acidity (pH) of saliva in the mouth is at 7 (Astuti et al., 2021). This study aims to determine the effect of consumption of soft drinks on the pH of stimulated and unstimulated saliva.

One of the drinks that is widely loved by the public is soft drinks that contain bicarbonic acid or commonly known as carbonated drinks or fizzy drinks (Santoso et al., 2022). Commercially available fizzy drinks have a pH ranging from 2.4 to 4.7. Drinks with a low pH have the potential to damage teeth. CO₂ dissolved in fizzy drinks is thought to increase acidity and lower pH (Marlina & Wijayanto, 2024). This can be seen in the results of previous research by Maulina et al., (2020) which states that there is a meaningful relationship between

the consumption of fizzy drinks and the pH of saliva. The more fizzy drinks are consumed, the more acidic the pH of saliva.

According to Istiqomah (2015) in Asmalinda et al., (2021), an effort to maintain the acid-base balance in the oral cavity by using a mechanical method, namely chewing. The pH of the saliva in the mouth at rest tends to be normal because there is no mechanical or chemical activity it causes. Saliva is produced at the time of eating by 90%, this process is a reaction to the stimulation of the sense of taste from chewing food. Foods that can affect salivary secretion and saliva pH in the mouth include xylitol (Suharja, 2022). Xylitol candy is a type of candy that contains natural sugar, so it is safe for dental and oral health (Zahra & Mardelita, 2025). In addition, the stability of saliva status after consumption of xylitol candy is better than that of sugary or sucrose candy (Tridiananda & Wahyuni, 2019).

The saliva pH measurement in this study was using a hanna brand digital pH meter that had previously been calibrated in a pH 7 and 4 buffer solution. Based on the results of the study, it was obtained that the average pH in the sample group that consumed soft drinks with stimulated saliva was 8.03 ± 0.129 and was not stimulated was 5.32 ± 0.304 , while the control group in the sample group that did not consume soft drinks and did not stimulate it had a pH of 6.62 ± 0.455 . The results of this study showed that the saliva pH was highest in the sample group of fizzy beverage consumption that chewed xylitol. The results of the research conducted by Nazri et al., (2021) stated that the saliva pH in xylitol has a higher average pH value of 7.5484 ± 0.7214 , while the average pH in sucrose gum is 4.8754 ± 0.8634 . Other research from Setyowati & Tiana, (2024) The average pH of saliva after consuming candy containing xylitol was obtained as 6.9844.

Chewing activities can stimulate saliva secretion. Stimulated saliva secretion causes saliva flow to become faster, thereby increasing saliva volume. The increased volume and flow of saliva is directly proportional to the increased saliva buffer capacity, which can neutralize the pH of the saliva (Asmalinda et al., 2021). This occurs because the components in saliva, namely organic and inorganic components, change (Tridiananda & Wahyuni, 2019). Saliva has three main buffers which are bicarbonate (HCO_3^-), phosphate (PO_4^{3-}), and protein, however, the most important of the three is bicarbonate (HCO_3^-) (Sawitri & Maulina, 2021). Bicarbonate is an important component of the buffer system and protects by suppressing fluctuations in saliva pH (Astuti et al., 2021).

Base on the results of statistical tests

Mann-Whitney In this study, it can be stated that there is a significant difference in pH after fizzy drinks between stimulated saliva and unstimulated saliva ($p=0.000$; $p<0.05$). After stimulation by chewing xylitol gum, the pH of saliva may increase. The results of this study are in line with the research conducted by Asmalinda et al., (2021) which states that there was a significant increase in the average pH value of Saliva in the treatment group. Xylitol gum has an effect on increasing saliva pH.

The results of this study are also in line with previous research by Setyowati & Tiana, (2024) It also mentions that there is an effect of chewing gum containing xylitol, namely an increase in saliva pH after chewing. Research conducted by Nur wahidah et al., (2022) It was seen that the average pH of saliva before the treatment of chewing xylitol gum was 7.2 and before it was 7.9. The paired T test obtained the results $p=0.005$ ($p<0.05$) showing an increase

in saliva pH before chewing xylitol candy. Gum containing xylitol can increase the pH of saliva. Bogovska-gigova & Hristov, (2025) In the results of his research, he has concluded that the use of xylitol lollipops has been proven to have the potential to increase the pH of saliva. The difference was statistically significant compared to the baseline level (<0.001).

Chewing with xylitol candy can stimulate saliva (Nazri et al., 2021; Setyowati & Tiana, 2024; Tridiananda & Wahyuni, 2019). Increased saliva pH after chewing xylitol gum is caused by the nature and working of xylitol which cannot be fermented by oral Streptococcus and other microorganisms so that acids are not produced that can lower the pH of saliva (Nazri et al., 2021). The results of the research conducted by Cocco et al., (2020). It has been proven that cariogenic and periodontal bacteria decline after consuming xylitol candy.

Xylitol has been shown to increase the pH of saliva, thereby aiding the remineralization process. Remineralization can occur if the conditions of the oral cavity are supportive, namely sufficient calcium and phosphate levels, high pH, the right organic and inorganic matrix for crystal formation, supportive factors in saliva, and control of factors that inhibit crystal formation. One of the factors in xylitol that favors remineralization is its structure that can form complex bonds with calcium. The process of increasing the absorption of calcium to the teeth and helps the remineralization process. Calcium is surrounded by water molecules in saliva. When xylitol is consumed, there will be competition between xylitol and water molecules so that a new hydration layer is formed. This can cause calcium to stay longer in the mouth so it can be used later. Xylitol can also stabilize calcium and phosphate levels in saliva, which are important in creating ideal conditions for remineralization (Setyowati & Tiana, 2024).

CONCLUSIONS

ased on the results of the study, it can be concluded that the average pH of saliva after consumption of soft drinks in the stimulated saliva group was higher than that of unstimulated saliva, with values of 8.03 ± 0.129 and 5.32 ± 0.304 , respectively. There was a significant difference in saliva pH after the consumption of fizzy drinks between stimulated and unstimulated saliva ($p=0.000$; $p<0.05$). Consumption of soft drinks affects changes in salivary pH, both in stimulated and unstimulated conditions, where saliva stimulation by chewing xylitol candy significantly increased saliva pH.

Based on the research findings, the following suggestions are made: First, for future researchers, it is recommended to measure the pH of saliva before and after the consumption of soft drinks to clearly understand the extent of pH decrease and recovery. Second, further research should compare the effects of xylitol candy with other types of candy or different methods of saliva stimulation on saliva pH. Lastly, for the public, especially college students, it is advised to limit the consumption of soft drinks and adopt habits that stimulate saliva, such as chewing sugar-free candies, to maintain a balance in saliva pH and promote dental and oral health.

REFERENCES

Andiriyani, D. (2020). Relationship of Consuming Softdrink Nn Ph Saliva Acidity in Students of Sman 13 Bandar Lampung in 2020. *Jurnal Kesehatan Gigi*, 7, 124–126. <http://ejournal.poltekkes-smg.ac.id/ojs/index.php/jkg/index>

Asmalinda, W., Sapada, E., & Agustin, Y. (2021). Peningkatan pH Saliva Perokok Aktif Menggunakan Permen Karet Xylitol. *Jurnal Kesehatan*, 12(2018), 427–434.

Astuti, N. P. W., Nugraha, P. Y., & Aryana, I. G. A. W. (2021). The Effect of Chocolate Biscuit and Jelly Candy Consumption on Salivary pH in Elementary Students. *Interdental Jurnal Kedokteran Gigi (IJKG)*, 17(2), 139–147.
<https://doi.org/10.46862/interdental.v17i2.1386>

B., A. H., & Datta, D. (2020). Effects of the salivary flow rate, pH, viscosity and buffering capacity on dental caries experience in government school children in Bangalore city. *International Journal Of Community Medicine And Public Health*, 7(12), 4865.
<https://doi.org/10.18203/2394-6040.ijcmph20205154>

Bogovska-gigova, R., & Hristov, K. (2025). Effect of Xylitol on Plaque Index and Acidity of Dental Biofilm and Saliva. *Journal of IMAB*, 31(2), 6116–6123.
<https://doi.org/https://doi.org/10.5272/jimab.2025312.6116>

Cocco, F., Cagetti, M. G., Majdub, O., & Campus, G. (2020). Concentration in Saliva and Antibacterial Effect of Xylitol Chewing Gum : In Vivo and In Vitro Study. *MDPI*, 10(8), 1–11.
<https://doi.org/https://doi.org/10.3390/app10082900>

Fitriati, N., Elly Trisnawati, E., & Hernawan, A. D. (2017). perilaku konsumsi minuman ringan (softdrink) Dan ph. *Unnes Journal of Public Health*, 6(2), hal 114-122.

Hirani, H., Iqbal, N., Bijarani, A. N., Hashmi, U. P., Khurram, S., & Baig, N. J. (2021). Effects of Different Beverages on Salivary pH and Time Taken by Saliva to Regain Normal pH among Teenagers. *Journal of Pharmaceutical Research International*, 33(May), 140–144. <https://doi.org/10.9734/jpri/2021/v33i29a31572>

Indriana, T. (2011). Perbedaan Laju Aliran Saliva dan pH karena Pengaruh Stimulus Kimia dan Mekanis. *J. Kedokt Meditek*, 17(44), 1–5.
<http://ejournal.ukrida.ac.id/ojs/>

Latifa, A. (2015) Digital Repository Universitas Jember. 27. <http://repository.unej.ac.id/bitstream/handle/123456789/65672/Ainul%20Latifah-101810401034.pdf?sequence=1>

Marlina, L., & Wijayanto, Y. (2024). Pengaruh Perbandingan Air Kelapa dan Sari Sirsak terhadap Kualitas Minuman Berkarbonasi dengan Penambahan NaHCO3. *TEDC*, 18(2), 88–94. <https://doi.org/https://dx.doi.org/10.70428/tedc.v18i2.838>

Maulina, N., Sawitri, H., & Millizia, A. (2020). Hubungan Konsumsi Minuman Ringan Dengan pH Saliva pada Mahasiswa Program Studi Kedokteran Fakultas Kedokteran Universitas Malikussaleh Tahun 2019. *averrous: Jurnal Kedokteran dan Kesehatan Malikussaleh*, 6(2), 61. <https://doi.org/10.29103/averrous.v6i2.2221>

Muddugangadhar, B. C., Sangur, R., Rudraprasad, I. V., Nandeeshwar, A. B., & Dhanya Kumar, B. H. (2015). A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups. *Journal of Indian Prosthodontist Society*, 15(4), 356–366.
<https://doi.org/10.4103/0972-4052.164907>

Nazri, W. A. B. W., William, & Rumiati, F. (2021). Characteristics of Saliva in FK Ukrida

Students After Chewing Paraffin , Xylitol and Sucrose Gum. Indonesian Journal of Biotechnology and Biodiversity, 5(1), 24–30.

Nurwahidah, N., Sopianah, Y., & Ambarwati, T. (2022). Chewing Xylitol Gum on Saliva pH in Islamic Students. The Incisor (Indonesian Journal of Care's in Oral Health), 6(1), 245–252. <https://doi.org/https://doi.org/10.37160/theincisor.v6i1.24>

One, R. (2015). Uji T-Test (Pengantar Statistik Lanjut). Dasar-dasar Statistik Penelitian, 95–116. http://ebook.repo.mercubuana-yogya.ac.id/Kuliah/materi_20151_doc/e-learning_uji_beda_rata-rata_1.pdf

Pachori, A., Kambalimath, H., Bhambhani, G., & Malhotra, G. (2018). Evaluation of Changes in Salivary pH after Intake of Different Eatables and Beverages in Children at Different Time Intervals. International Journal of Clinical Pediatric Dentistry, 11(3), 177–182. <https://doi.org/10.5005/jp-journals-10005-1507>

Paramanandana, P. G. A., Prasetya, M. A., & Susanti, D. N. A. (2020). Hubungan volume dan derajat keasaman (ph) saliva terhadap kejadian karies anak usia 7-9 tahun di Sekolah Dasar Negeri 5 Sumerta Denpasar. Bali Dental Journal, 4(1), 44–48. <https://doi.org/10.51559/bdj.v4i1.245>

Pitu Wulandari, & Felicia Lestari. (2014). pH dan Kapasitas Buffer Saliva dalam Hubungannya Terhadap Pembentukan Kalkulus pada Pasien di Instalasi Periodontia RSGM USU. Dentika: Dental Journal, 18(2), 116–119. <https://doi.org/10.32734/dentika.v18i2.2014>

Rafika, M., Wahyuni, I. S., & Hidayat, W. (2019). Penentuan Laju Alir Saliva Pada Pasien Geriatri Sebagai Pertimbangan Manajemen Komprehensif Pada Stomatitis Herpetika. B-Dent: Jurnal Kedokteran Gigi Universitas Baiturrahmah, 5(2), 144–152. <https://doi.org/10.33854/jbd.v5i2.163>

Riskesdas. (2018). Hasil Utama Riskesdas 2018. Badan Penelitian dan Pengembangan Kesehatan. Jakarta : Kementerian Kesehatan RI.

Santoso, T. L. A., Wicaksono, D. A., & Gunawan, P. N. (2022). Effects of Carbonated Soft Drink on Saliva pH in the Occurrence of Dental Caries. E-GiGi, 10(30), 66–74. <https://doi.org/https://doi.org/10.35790/eg.v10i11>

Sawitri, H., & Maulina, N. (2021). Derajat pH Saliva pada Mahasiswa Program Studi Kedokteran Fakultas Kedokteran Universitas Malikussaleh yang Mengkonsumsi Kopi Tahun 2020. AVERROUS: Jurnal Kedokteran Dan Kesehatan Malikussaleh, 7(1), 84–94. <https://doi.org/https://doi.org/10.29103/averrous.v7i1.4729>

Setiawan, N. (2019). Metodologi penelitian : pengolahan dan analisis data. Inspektorat Jendral Departemen Pendidikan Nasional, 25–27. https://pustaka.unpad.ac.id/wpcontent/uploads/2009/03/pengolahan_dan_analisis_data.pdf

Setyowati, J. D., & Tiana, M. (2024). Pengunyahan Permen Karet yang Mengandung Xylitol terhadap Peningkatan pH Saliva. Jurnal Ilmiah Keperawatan Gigi (JIKG), 5(1), 51–57.

Subhaktiyasa, P. G. (2024). Menentukan Populasi dan Sampel : Pendekatan Metodologi Penelitian Kuantitatif dan Kualitatif. 9, 2721–2731.

Suharja, E. S. (2022). Effect of Cheese and Xylitol Gum on Saliva pH and PHP Index. International Research Journal of Pharmacy and Medical Sciences, 5(3), 24–26.

Tridiananda, R., & Wahyuni, S. (2019). Pengaruh Mengunyah Permen Karet Berxylitol

terhadap pH Saliva. *Jurnal Kesehatan Gigi Dan MULut (JKGM)*, 1(2), 36–39.

WHO. (2018). Oral Health. http://apps.who.int/iris/bitstream/handle/10665/61182/WHO_ORH_DMFT12_96.pdf?sequen ce=1&isAllowed=y, diakses pada tanggal 8 Juni 2025.

Zahara, E., Niakurniawati, & Mufizarni. (2023). Derajat Keasaman (pH) Saliva dengan Karies Gigi di SDN Kayee Leue Kabupaten Aceh Besar. *JDHT Journal of Dental Hygiene and Therapy*, 4(1), 13–17. <https://doi.org/10.36082/jdht.v4i1.925>

Zahra, N., & Mardelita, S. (2025). Pengaruh Mengunyah Permen Karet Free Sugar (Xylitol) terhadap Penurunan Plak pada Anak Tunagrahita. *JDHT*, 6(1), 41–45. <https://doi.org/10.36082/jdht.v6i1.1802>

© 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (<https://creativecommons.org/licenses/by-sa/4.0/>).